2,596 research outputs found

    Integrated Framework for Secure and Energy Efficient Communication System in Heterogeneous Sensory Application

    Get PDF
    Irrespective of different forms and strategies implementing for securing Wireless Sensor Network (WSN), there are very less strategies that offers cost effective security over heterogeneous network. Therefore, this paper presents an integrated set of different processes that emphasize over secure routing, intellectual and delay-compensated routing, and optimization principle with a sole intention of securing the communication to and from the sensor nodes during data aggregation. The processed system advocates the non-usage of complex cryptography and encourages the usage of probability their and analytical modelling in order to render more practical implementation. The simulated outcome of study shows that proposed system offers reduced delay, more throughputs, and reduced energy consumption in contrast to existing system

    FSDA: Framework for Secure Data Aggregation in Wireless Sensor Network for Enhancing Key Management

    Get PDF
    An effective key management plays a crucial role in imposing a resilient security technique in Wireless Sensor Network (WSN). After reviewing the existing approaches of key management, it is confirmed that existing approachs does not offer good coverage on all potential security breaches in WSN. With WSN being essential part of Internet-of-Things (IoT), the existing approaches of key management can definitely not address such security breaches. Therefore, this paper introduces a Framework for Secure Data Aggregation (FSDA) that hybridizes the public key encryption mechanism in order to obtain a novel key management system. The proposed system does not target any specific attacks but is widely applicable for both internal and external attacks in WSN owing to its design principle. The study outcome exhibits that proposed FSDA offers highly reduced computational burden, minimal delay, less energy consumption, and higher data transmission perforance in contrast to frequency used encryption schemes in WSN

    Securing Heterogeneous Wireless Sensor Networks: Breaking and Fixing a Three-Factor Authentication Protocol

    Get PDF
    Heterogeneous wireless sensor networks (HWSNs) are employed in many real-time applications, such as Internet of sensors (IoS), Internet of vehicles (IoV), healthcare monitoring, and so on. As wireless sensor nodes have constrained computing, storage and communication capabilities, designing energy-efficient authentication protocols is a very important issue in wireless sensor network security. Recently, Amin et al. presented an untraceable and anonymous three-factor authentication (3FA) scheme for HWSNs and argued that their protocol is efficient and can withstand the common security threats in this sort of networks. In this article, we show how their protocol is not immune to user impersonation, de-synchronization and traceability attacks. In addition, an adversary can disclose session key under the typical assumption that sensors are not tamper-resistant. To overcome these drawbacks, we improve the Amin et al.'s protocol. First, we informally show that our improved scheme is secure against the most common attacks in HWSNs in which the attacks against Amin et al.'s protocol are part of them. Moreover, we verify formally our proposed protocol using the BAN logic. Compared with the Amin et al.'s scheme, the proposed protocol is both more efficient and more secure to be employed which renders the proposal suitable for HWSN networks.This work was partially supported by the MINECO grant TIN2016-79095-C2-2-R (SMOG-DEV—Security mechanisms for fog computing: advanced security for devices); and by the CAM grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks)

    Improving IF Algorithm for Data Aggregation Techniques in Wireless Sensor Networks

    Get PDF
    In Wireless Sensor Network (WSN), fact from different sensor nodes is collected at assembling node, which is typically complete via modest procedures such as averaging as inadequate computational power and energy resources. Though such collections is identified to be extremely susceptible to node compromising attacks. These approaches are extremely prone to attacks as WSN are typically lacking interfere resilient hardware. Thus, purpose of veracity of facts and prestige of sensor nodes is critical for wireless sensor networks. Therefore, imminent gatherer nodes will be proficient of accomplishment additional cultivated data aggregation algorithms, so creating WSN little unresisting, as the performance of actual low power processors affectedly increases. Iterative filtering algorithms embrace inordinate capacity for such a resolution. The way of allocated the matching mass elements to information delivered by each source, such iterative algorithms concurrently assemble facts from several roots and deliver entrust valuation of these roots. Though suggestively extra substantial against collusion attacks beside the modest averaging techniques, are quiet vulnerable to a different cultivated attack familiarize. The existing literature is surveyed in this paper to have a study of iterative filtering techniques and a detailed comparison is provided. At the end of this paper new technique of improved iterative filtering is proposed with the help of literature survey and drawbacks found in the literature

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted
    • …
    corecore