12,838 research outputs found

    On the van der Waerden numbers w(2;3,t)

    Get PDF
    We present results and conjectures on the van der Waerden numbers w(2;3,t) and on the new palindromic van der Waerden numbers pdw(2;3,t). We have computed the new number w(2;3,19) = 349, and we provide lower bounds for 20 <= t <= 39, where for t <= 30 we conjecture these lower bounds to be exact. The lower bounds for 24 <= t <= 30 refute the conjecture that w(2;3,t) <= t^2, and we present an improved conjecture. We also investigate regularities in the good partitions (certificates) to better understand the lower bounds. Motivated by such reglarities, we introduce *palindromic van der Waerden numbers* pdw(k; t_0,...,t_{k-1}), defined as ordinary van der Waerden numbers w(k; t_0,...,t_{k-1}), however only allowing palindromic solutions (good partitions), defined as reading the same from both ends. Different from the situation for ordinary van der Waerden numbers, these "numbers" need actually to be pairs of numbers. We compute pdw(2;3,t) for 3 <= t <= 27, and we provide lower bounds, which we conjecture to be exact, for t <= 35. All computations are based on SAT solving, and we discuss the various relations between SAT solving and Ramsey theory. Especially we introduce a novel (open-source) SAT solver, the tawSolver, which performs best on the SAT instances studied here, and which is actually the original DLL-solver, but with an efficient implementation and a modern heuristic typical for look-ahead solvers (applying the theory developed in the SAT handbook article of the second author).Comment: Second version 25 pages, updates of numerical data, improved formulations, and extended discussions on SAT. Third version 42 pages, with SAT solver data (especially for new SAT solver) and improved representation. Fourth version 47 pages, with updates and added explanation

    Analysis of the computational complexity of solving random satisfiability problems using branch and bound search algorithms

    Full text link
    The computational complexity of solving random 3-Satisfiability (3-SAT) problems is investigated. 3-SAT is a representative example of hard computational tasks; it consists in knowing whether a set of alpha N randomly drawn logical constraints involving N Boolean variables can be satisfied altogether or not. Widely used solving procedures, as the Davis-Putnam-Loveland-Logeman (DPLL) algorithm, perform a systematic search for a solution, through a sequence of trials and errors represented by a search tree. In the present study, we identify, using theory and numerical experiments, easy (size of the search tree scaling polynomially with N) and hard (exponential scaling) regimes as a function of the ratio alpha of constraints per variable. The typical complexity is explicitly calculated in the different regimes, in very good agreement with numerical simulations. Our theoretical approach is based on the analysis of the growth of the branches in the search tree under the operation of DPLL. On each branch, the initial 3-SAT problem is dynamically turned into a more generic 2+p-SAT problem, where p and 1-p are the fractions of constraints involving three and two variables respectively. The growth of each branch is monitored by the dynamical evolution of alpha and p and is represented by a trajectory in the static phase diagram of the random 2+p-SAT problem. Depending on whether or not the trajectories cross the boundary between phases, single branches or full trees are generated by DPLL, resulting in easy or hard resolutions.Comment: 37 RevTeX pages, 15 figures; submitted to Phys.Rev.

    Portfolio-based Planning: State of the Art, Common Practice and Open Challenges

    Get PDF
    In recent years the field of automated planning has significantly advanced and several powerful domain-independent planners have been developed. However, none of these systems clearly outperforms all the others in every known benchmark domain. This observation motivated the idea of configuring and exploiting a portfolio of planners to perform better than any individual planner: some recent planning systems based on this idea achieved significantly good results in experimental analysis and International Planning Competitions. Such results let us suppose that future challenges of the Automated Planning community will converge on designing different approaches for combining existing planning algorithms. This paper reviews existing techniques and provides an exhaustive guide to portfolio-based planning. In addition, the paper outlines open issues of existing approaches and highlights possible future evolution of these techniques

    Anytime Computation of Cautious Consequences in Answer Set Programming

    Full text link
    Query answering in Answer Set Programming (ASP) is usually solved by computing (a subset of) the cautious consequences of a logic program. This task is computationally very hard, and there are programs for which computing cautious consequences is not viable in reasonable time. However, current ASP solvers produce the (whole) set of cautious consequences only at the end of their computation. This paper reports on strategies for computing cautious consequences, also introducing anytime algorithms able to produce sound answers during the computation.Comment: To appear in Theory and Practice of Logic Programmin
    • …
    corecore