758 research outputs found

    Improving Sampling from Generative Autoencoders with Markov Chains

    Get PDF
    We focus on generative autoencoders, such as variational or adversarial autoencoders, which jointly learn a generative model alongside an inference model. We define generative autoencoders as autoencoders which are trained to softly enforce a prior on the latent distribution learned by the model. However, the model does not necessarily learn to match the prior. We formulate a Markov chain Monte Carlo (MCMC) sampling process, equivalent to iteratively encoding and decoding, which allows us to sample from the learned latent distribution. Using this we can improve the quality of samples drawn from the model, especially when the learned distribution is far from the prior. Using MCMC sampling, we also reveal previously unseen differences between generative autoencoders trained either with or without the denoising criterion

    On the Equivalence Between Deep NADE and Generative Stochastic Networks

    Full text link
    Neural Autoregressive Distribution Estimators (NADEs) have recently been shown as successful alternatives for modeling high dimensional multimodal distributions. One issue associated with NADEs is that they rely on a particular order of factorization for P(x)P(\mathbf{x}). This issue has been recently addressed by a variant of NADE called Orderless NADEs and its deeper version, Deep Orderless NADE. Orderless NADEs are trained based on a criterion that stochastically maximizes P(x)P(\mathbf{x}) with all possible orders of factorizations. Unfortunately, ancestral sampling from deep NADE is very expensive, corresponding to running through a neural net separately predicting each of the visible variables given some others. This work makes a connection between this criterion and the training criterion for Generative Stochastic Networks (GSNs). It shows that training NADEs in this way also trains a GSN, which defines a Markov chain associated with the NADE model. Based on this connection, we show an alternative way to sample from a trained Orderless NADE that allows to trade-off computing time and quality of the samples: a 3 to 10-fold speedup (taking into account the waste due to correlations between consecutive samples of the chain) can be obtained without noticeably reducing the quality of the samples. This is achieved using a novel sampling procedure for GSNs called annealed GSN sampling, similar to tempering methods that combines fast mixing (obtained thanks to steps at high noise levels) with accurate samples (obtained thanks to steps at low noise levels).Comment: ECML/PKDD 201

    Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net

    Full text link
    We propose a novel method to directly learn a stochastic transition operator whose repeated application provides generated samples. Traditional undirected graphical models approach this problem indirectly by learning a Markov chain model whose stationary distribution obeys detailed balance with respect to a parameterized energy function. The energy function is then modified so the model and data distributions match, with no guarantee on the number of steps required for the Markov chain to converge. Moreover, the detailed balance condition is highly restrictive: energy based models corresponding to neural networks must have symmetric weights, unlike biological neural circuits. In contrast, we develop a method for directly learning arbitrarily parameterized transition operators capable of expressing non-equilibrium stationary distributions that violate detailed balance, thereby enabling us to learn more biologically plausible asymmetric neural networks and more general non-energy based dynamical systems. The proposed training objective, which we derive via principled variational methods, encourages the transition operator to "walk back" in multi-step trajectories that start at data-points, as quickly as possible back to the original data points. We present a series of experimental results illustrating the soundness of the proposed approach, Variational Walkback (VW), on the MNIST, CIFAR-10, SVHN and CelebA datasets, demonstrating superior samples compared to earlier attempts to learn a transition operator. We also show that although each rapid training trajectory is limited to a finite but variable number of steps, our transition operator continues to generate good samples well past the length of such trajectories, thereby demonstrating the match of its non-equilibrium stationary distribution to the data distribution. Source Code: http://github.com/anirudh9119/walkback_nips17Comment: To appear at NIPS 201

    Creativity: Generating Diverse Questions using Variational Autoencoders

    Full text link
    Generating diverse questions for given images is an important task for computational education, entertainment and AI assistants. Different from many conventional prediction techniques is the need for algorithms to generate a diverse set of plausible questions, which we refer to as "creativity". In this paper we propose a creative algorithm for visual question generation which combines the advantages of variational autoencoders with long short-term memory networks. We demonstrate that our framework is able to generate a large set of varying questions given a single input image.Comment: Accepted to CVPR 201
    • …
    corecore