20,320 research outputs found

    Visual Reinforcement Learning with Imagined Goals

    Full text link
    For an autonomous agent to fulfill a wide range of user-specified goals at test time, it must be able to learn broadly applicable and general-purpose skill repertoires. Furthermore, to provide the requisite level of generality, these skills must handle raw sensory input such as images. In this paper, we propose an algorithm that acquires such general-purpose skills by combining unsupervised representation learning and reinforcement learning of goal-conditioned policies. Since the particular goals that might be required at test-time are not known in advance, the agent performs a self-supervised "practice" phase where it imagines goals and attempts to achieve them. We learn a visual representation with three distinct purposes: sampling goals for self-supervised practice, providing a structured transformation of raw sensory inputs, and computing a reward signal for goal reaching. We also propose a retroactive goal relabeling scheme to further improve the sample-efficiency of our method. Our off-policy algorithm is efficient enough to learn policies that operate on raw image observations and goals for a real-world robotic system, and substantially outperforms prior techniques.Comment: 15 pages, NeurIPS 201

    Improving Safety in Reinforcement Learning Using Model-Based Architectures and Human Intervention

    Full text link
    Recent progress in AI and Reinforcement learning has shown great success in solving complex problems with high dimensional state spaces. However, most of these successes have been primarily in simulated environments where failure is of little or no consequence. Most real-world applications, however, require training solutions that are safe to operate as catastrophic failures are inadmissible especially when there is human interaction involved. Currently, Safe RL systems use human oversight during training and exploration in order to make sure the RL agent does not go into a catastrophic state. These methods require a large amount of human labor and it is very difficult to scale up. We present a hybrid method for reducing the human intervention time by combining model-based approaches and training a supervised learner to improve sample efficiency while also ensuring safety. We evaluate these methods on various grid-world environments using both standard and visual representations and show that our approach achieves better performance in terms of sample efficiency, number of catastrophic states reached as well as overall task performance compared to traditional model-free approache

    Learning Synergies between Pushing and Grasping with Self-supervised Deep Reinforcement Learning

    Full text link
    Skilled robotic manipulation benefits from complex synergies between non-prehensile (e.g. pushing) and prehensile (e.g. grasping) actions: pushing can help rearrange cluttered objects to make space for arms and fingers; likewise, grasping can help displace objects to make pushing movements more precise and collision-free. In this work, we demonstrate that it is possible to discover and learn these synergies from scratch through model-free deep reinforcement learning. Our method involves training two fully convolutional networks that map from visual observations to actions: one infers the utility of pushes for a dense pixel-wise sampling of end effector orientations and locations, while the other does the same for grasping. Both networks are trained jointly in a Q-learning framework and are entirely self-supervised by trial and error, where rewards are provided from successful grasps. In this way, our policy learns pushing motions that enable future grasps, while learning grasps that can leverage past pushes. During picking experiments in both simulation and real-world scenarios, we find that our system quickly learns complex behaviors amid challenging cases of clutter, and achieves better grasping success rates and picking efficiencies than baseline alternatives after only a few hours of training. We further demonstrate that our method is capable of generalizing to novel objects. Qualitative results (videos), code, pre-trained models, and simulation environments are available at http://vpg.cs.princeton.eduComment: To appear at the International Conference On Intelligent Robots and Systems (IROS) 2018. Project webpage: http://vpg.cs.princeton.edu Summary video: https://youtu.be/-OkyX7Zlhi

    When Autonomous Systems Meet Accuracy and Transferability through AI: A Survey

    Full text link
    With widespread applications of artificial intelligence (AI), the capabilities of the perception, understanding, decision-making and control for autonomous systems have improved significantly in the past years. When autonomous systems consider the performance of accuracy and transferability, several AI methods, like adversarial learning, reinforcement learning (RL) and meta-learning, show their powerful performance. Here, we review the learning-based approaches in autonomous systems from the perspectives of accuracy and transferability. Accuracy means that a well-trained model shows good results during the testing phase, in which the testing set shares a same task or a data distribution with the training set. Transferability means that when a well-trained model is transferred to other testing domains, the accuracy is still good. Firstly, we introduce some basic concepts of transfer learning and then present some preliminaries of adversarial learning, RL and meta-learning. Secondly, we focus on reviewing the accuracy or transferability or both of them to show the advantages of adversarial learning, like generative adversarial networks (GANs), in typical computer vision tasks in autonomous systems, including image style transfer, image superresolution, image deblurring/dehazing/rain removal, semantic segmentation, depth estimation, pedestrian detection and person re-identification (re-ID). Then, we further review the performance of RL and meta-learning from the aspects of accuracy or transferability or both of them in autonomous systems, involving pedestrian tracking, robot navigation and robotic manipulation. Finally, we discuss several challenges and future topics for using adversarial learning, RL and meta-learning in autonomous systems

    Learning Image-Conditioned Dynamics Models for Control of Under-actuated Legged Millirobots

    Full text link
    Millirobots are a promising robotic platform for many applications due to their small size and low manufacturing costs. Legged millirobots, in particular, can provide increased mobility in complex environments and improved scaling of obstacles. However, controlling these small, highly dynamic, and underactuated legged systems is difficult. Hand-engineered controllers can sometimes control these legged millirobots, but they have difficulties with dynamic maneuvers and complex terrains. We present an approach for controlling a real-world legged millirobot that is based on learned neural network models. Using less than 17 minutes of data, our method can learn a predictive model of the robot's dynamics that can enable effective gaits to be synthesized on the fly for following user-specified waypoints on a given terrain. Furthermore, by leveraging expressive, high-capacity neural network models, our approach allows for these predictions to be directly conditioned on camera images, endowing the robot with the ability to predict how different terrains might affect its dynamics. This enables sample-efficient and effective learning for locomotion of a dynamic legged millirobot on various terrains, including gravel, turf, carpet, and styrofoam. Experiment videos can be found at https://sites.google.com/view/imageconddy

    Efficient Dialog Policy Learning via Positive Memory Retention

    Full text link
    This paper is concerned with the training of recurrent neural networks as goal-oriented dialog agents using reinforcement learning. Training such agents with policy gradients typically requires a large amount of samples. However, the collection of the required data in form of conversations between chat-bots and human agents is time-consuming and expensive. To mitigate this problem, we describe an efficient policy gradient method using positive memory retention, which significantly increases the sample-efficiency. We show that our method is 10 times more sample-efficient than policy gradients in extensive experiments on a new synthetic number guessing game. Moreover, in a real-word visual object discovery game, the proposed method is twice as sample-efficient as policy gradients and shows state-of-the-art performance.Comment: Published in IEEE Spoken Language Technology (SLT 2018), Athens, Greec

    Learning Unmanned Aerial Vehicle Control for Autonomous Target Following

    Full text link
    While deep reinforcement learning (RL) methods have achieved unprecedented successes in a range of challenging problems, their applicability has been mainly limited to simulation or game domains due to the high sample complexity of the trial-and-error learning process. However, real-world robotic applications often need a data-efficient learning process with safety-critical constraints. In this paper, we consider the challenging problem of learning unmanned aerial vehicle (UAV) control for tracking a moving target. To acquire a strategy that combines perception and control, we represent the policy by a convolutional neural network. We develop a hierarchical approach that combines a model-free policy gradient method with a conventional feedback proportional-integral-derivative (PID) controller to enable stable learning without catastrophic failure. The neural network is trained by a combination of supervised learning from raw images and reinforcement learning from games of self-play. We show that the proposed approach can learn a target following policy in a simulator efficiently and the learned behavior can be successfully transferred to the DJI quadrotor platform for real-world UAV control

    Continuous Deep Q-Learning with Model-based Acceleration

    Full text link
    Model-free reinforcement learning has been successfully applied to a range of challenging problems, and has recently been extended to handle large neural network policies and value functions. However, the sample complexity of model-free algorithms, particularly when using high-dimensional function approximators, tends to limit their applicability to physical systems. In this paper, we explore algorithms and representations to reduce the sample complexity of deep reinforcement learning for continuous control tasks. We propose two complementary techniques for improving the efficiency of such algorithms. First, we derive a continuous variant of the Q-learning algorithm, which we call normalized adantage functions (NAF), as an alternative to the more commonly used policy gradient and actor-critic methods. NAF representation allows us to apply Q-learning with experience replay to continuous tasks, and substantially improves performance on a set of simulated robotic control tasks. To further improve the efficiency of our approach, we explore the use of learned models for accelerating model-free reinforcement learning. We show that iteratively refitted local linear models are especially effective for this, and demonstrate substantially faster learning on domains where such models are applicable

    Deep Intrinsically Motivated Continuous Actor-Critic for Efficient Robotic Visuomotor Skill Learning

    Full text link
    In this paper, we present a new intrinsically motivated actor-critic algorithm for learning continuous motor skills directly from raw visual input. Our neural architecture is composed of a critic and an actor network. Both networks receive the hidden representation of a deep convolutional autoencoder which is trained to reconstruct the visual input, while the centre-most hidden representation is also optimized to estimate the state value. Separately, an ensemble of predictive world models generates, based on its learning progress, an intrinsic reward signal which is combined with the extrinsic reward to guide the exploration of the actor-critic learner. Our approach is more data-efficient and inherently more stable than the existing actor-critic methods for continuous control from pixel data. We evaluate our algorithm for the task of learning robotic reaching and grasping skills on a realistic physics simulator and on a humanoid robot. The results show that the control policies learned with our approach can achieve better performance than the compared state-of-the-art and baseline algorithms in both dense-reward and challenging sparse-reward settings
    corecore