11,380 research outputs found

    A Study of SVM Kernel Functions for Sensitivity Classification Ensembles with POS Sequences

    Get PDF
    Freedom of Information (FOI) laws legislate that government documents should be opened to the public. However, many government documents contain sensitive information, such as confidential information, that is exempt from release. Therefore, government documents must be sensitivity reviewed prior to release, to identify and close any sensitive information. With the adoption of born-digital documents, such as email, there is a need for automatic sensitivity classification to assist digital sensitivity review. SVM classifiers and Part-of-Speech sequences have separately been shown to be promising for sensitivity classification. However, sequence classification methodologies, and specifically SVM kernel functions, have not been fully investigated for sensitivity classification. Therefore, in this work, we present an evaluation of five SVM kernel functions for sensitivity classification using POS sequences. Moreover, we show that an ensemble classifier that combines POS sequence classification with text classification can significantly improve sensitivity classification effectiveness (+6.09% F2) compared with a text classification baseline, according to McNemar's test of significance

    "'Who are you?' - Learning person specific classifiers from video"

    Get PDF
    We investigate the problem of automatically labelling faces of characters in TV or movie material with their names, using only weak supervision from automaticallyaligned subtitle and script text. Our previous work (Everingham et al. [8]) demonstrated promising results on the task, but the coverage of the method (proportion of video labelled) and generalization was limited by a restriction to frontal faces and nearest neighbour classification. In this paper we build on that method, extending the coverage greatly by the detection and recognition of characters in profile views. In addition, we make the following contributions: (i) seamless tracking, integration and recognition of profile and frontal detections, and (ii) a character specific multiple kernel classifier which is able to learn the features best able to discriminate between the characters. We report results on seven episodes of the TV series “Buffy the Vampire Slayer”, demonstrating significantly increased coverage and performance with respect to previous methods on this material

    Feature and Region Selection for Visual Learning

    Full text link
    Visual learning problems such as object classification and action recognition are typically approached using extensions of the popular bag-of-words (BoW) model. Despite its great success, it is unclear what visual features the BoW model is learning: Which regions in the image or video are used to discriminate among classes? Which are the most discriminative visual words? Answering these questions is fundamental for understanding existing BoW models and inspiring better models for visual recognition. To answer these questions, this paper presents a method for feature selection and region selection in the visual BoW model. This allows for an intermediate visualization of the features and regions that are important for visual learning. The main idea is to assign latent weights to the features or regions, and jointly optimize these latent variables with the parameters of a classifier (e.g., support vector machine). There are four main benefits of our approach: (1) Our approach accommodates non-linear additive kernels such as the popular χ2\chi^2 and intersection kernel; (2) our approach is able to handle both regions in images and spatio-temporal regions in videos in a unified way; (3) the feature selection problem is convex, and both problems can be solved using a scalable reduced gradient method; (4) we point out strong connections with multiple kernel learning and multiple instance learning approaches. Experimental results in the PASCAL VOC 2007, MSR Action Dataset II and YouTube illustrate the benefits of our approach

    Native Language Identification on Text and Speech

    Full text link
    This paper presents an ensemble system combining the output of multiple SVM classifiers to native language identification (NLI). The system was submitted to the NLI Shared Task 2017 fusion track which featured students essays and spoken responses in form of audio transcriptions and iVectors by non-native English speakers of eleven native languages. Our system competed in the challenge under the team name ZCD and was based on an ensemble of SVM classifiers trained on character n-grams achieving 83.58% accuracy and ranking 3rd in the shared task.Comment: Proceedings of the Workshop on Innovative Use of NLP for Building Educational Applications (BEA

    Comparative Evaluation of Action Recognition Methods via Riemannian Manifolds, Fisher Vectors and GMMs: Ideal and Challenging Conditions

    Full text link
    We present a comparative evaluation of various techniques for action recognition while keeping as many variables as possible controlled. We employ two categories of Riemannian manifolds: symmetric positive definite matrices and linear subspaces. For both categories we use their corresponding nearest neighbour classifiers, kernels, and recent kernelised sparse representations. We compare against traditional action recognition techniques based on Gaussian mixture models and Fisher vectors (FVs). We evaluate these action recognition techniques under ideal conditions, as well as their sensitivity in more challenging conditions (variations in scale and translation). Despite recent advancements for handling manifolds, manifold based techniques obtain the lowest performance and their kernel representations are more unstable in the presence of challenging conditions. The FV approach obtains the highest accuracy under ideal conditions. Moreover, FV best deals with moderate scale and translation changes

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Pareto-Path Multi-Task Multiple Kernel Learning

    Full text link
    A traditional and intuitively appealing Multi-Task Multiple Kernel Learning (MT-MKL) method is to optimize the sum (thus, the average) of objective functions with (partially) shared kernel function, which allows information sharing amongst tasks. We point out that the obtained solution corresponds to a single point on the Pareto Front (PF) of a Multi-Objective Optimization (MOO) problem, which considers the concurrent optimization of all task objectives involved in the Multi-Task Learning (MTL) problem. Motivated by this last observation and arguing that the former approach is heuristic, we propose a novel Support Vector Machine (SVM) MT-MKL framework, that considers an implicitly-defined set of conic combinations of task objectives. We show that solving our framework produces solutions along a path on the aforementioned PF and that it subsumes the optimization of the average of objective functions as a special case. Using algorithms we derived, we demonstrate through a series of experimental results that the framework is capable of achieving better classification performance, when compared to other similar MTL approaches.Comment: Accepted by IEEE Transactions on Neural Networks and Learning System
    • …
    corecore