836 research outputs found

    Likelihood-Maximizing-Based Multiband Spectral Subtraction for Robust Speech Recognition

    Get PDF
    Automatic speech recognition performance degrades significantly when speech is affected by environmental noise. Nowadays, the major challenge is to achieve good robustness in adverse noisy conditions so that automatic speech recognizers can be used in real situations. Spectral subtraction (SS) is a well-known and effective approach; it was originally designed for improving the quality of speech signal judged by human listeners. SS techniques usually improve the quality and intelligibility of speech signal while speech recognition systems need compensation techniques to reduce mismatch between noisy speech features and clean trained acoustic model. Nevertheless, correlation can be expected between speech quality improvement and the increase in recognition accuracy. This paper proposes a novel approach for solving this problem by considering SS and the speech recognizer not as two independent entities cascaded together, but rather as two interconnected components of a single system, sharing the common goal of improved speech recognition accuracy. This will incorporate important information of the statistical models of the recognition engine as a feedback for tuning SS parameters. By using this architecture, we overcome the drawbacks of previously proposed methods and achieve better recognition accuracy. Experimental evaluations show that the proposed method can achieve significant improvement of recognition rates across a wide range of signal to noise ratios

    Joint Uncertainty Decoding with Unscented Transform for Noise Robust Subspace Gaussian Mixture Models

    Get PDF
    Common noise compensation techniques use vector Taylor series (VTS) to approximate the mismatch function. Recent work shows that the approximation accuracy may be improved by sampling. One such sampling technique is the unscented transform (UT), which draws samples deterministically from clean speech and noise model to derive the noise corrupted speech parameters. This paper applies UT to noise compensation of the subspace Gaussian mixture model (SGMM). Since UT requires relatively smaller number of samples for accurate estimation, it has significantly lower computational cost compared to other random sampling techniques. However, the number of surface Gaussians in an SGMM is typically very large, making the direct application of UT, for compensating individual Gaussian components, computationally impractical. In this paper, we avoid the computational burden by employing UT in the framework of joint uncertainty decoding (JUD), which groups all the Gaussian components into small number of classes, sharing the compensation parameters by class. We evaluate the JUD-UT technique for an SGMM system using the Aurora 4 corpus. Experimental results indicate that UT can lead to increased accuracy compared to VTS approximation if the JUD phase factor is untuned, and to similar accuracy if the phase factor is tuned empirically. 1

    A Bayesian Network View on Acoustic Model-Based Techniques for Robust Speech Recognition

    Full text link
    This article provides a unifying Bayesian network view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules leading to a unified view on known derivations as well as to new formulations for certain approaches. The generic Bayesian perspective provided in this contribution thus highlights structural differences and similarities between the analyzed approaches

    Generalization Error in Deep Learning

    Get PDF
    Deep learning models have lately shown great performance in various fields such as computer vision, speech recognition, speech translation, and natural language processing. However, alongside their state-of-the-art performance, it is still generally unclear what is the source of their generalization ability. Thus, an important question is what makes deep neural networks able to generalize well from the training set to new data. In this article, we provide an overview of the existing theory and bounds for the characterization of the generalization error of deep neural networks, combining both classical and more recent theoretical and empirical results

    Statistical models for noise-robust speech recognition

    Get PDF
    A standard way of improving the robustness of speech recognition systems to noise is model compensation. This replaces a speech recogniser's distributions over clean speech by ones over noise-corrupted speech. For each clean speech component, model compensation techniques usually approximate the corrupted speech distribution with a diagonal-covariance Gaussian distribution. This thesis looks into improving on this approximation in two ways: firstly, by estimating full-covariance Gaussian distributions; secondly, by approximating corrupted-speech likelihoods without any parameterised distribution. The first part of this work is about compensating for within-component feature correlations under noise. For this, the covariance matrices of the computed Gaussians should be full instead of diagonal. The estimation of off-diagonal covariance elements turns out to be sensitive to approximations. A popular approximation is the one that state-of-the-art compensation schemes, like VTS compensation, use for dynamic coefficients: the continuous-time approximation. Standard speech recognisers contain both per-time slice, static, coefficients, and dynamic coefficients, which represent signal changes over time, and are normally computed from a window of static coefficients. To remove the need for the continuous-time approximation, this thesis introduces a new technique. It first compensates a distribution over the window of statics, and then applies the same linear projection that extracts dynamic coefficients. It introduces a number of methods that address the correlation changes that occur in noise within this framework. The next problem is decoding speed with full covariances. This thesis re-analyses the previously-introduced predictive linear transformations, and shows how they can model feature correlations at low and tunable computational cost. The second part of this work removes the Gaussian assumption completely. It introduces a sampling method that, given speech and noise distributions and a mismatch function, in the limit calculates the corrupted speech likelihood exactly. For this, it transforms the integral in the likelihood expression, and then applies sequential importance resampling. Though it is too slow to use for recognition, it enables a more fine-grained assessment of compensation techniques, based on the KL divergence to the ideal compensation for one component. The KL divergence proves to predict the word error rate well. This technique also makes it possible to evaluate the impact of approximations that standard compensation schemes make.This work was supported by Toshiba Research Europe Ltd., Cambridge Research Laboratory

    Noise-Robust Speech Recognition Using Deep Neural Network

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Temporally Varying Weight Regression for Speech Recognition

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore