17,330 research outputs found

    Improving Retrieval-Based Question Answering with Deep Inference Models

    Full text link
    Question answering is one of the most important and difficult applications at the border of information retrieval and natural language processing, especially when we talk about complex science questions which require some form of inference to determine the correct answer. In this paper, we present a two-step method that combines information retrieval techniques optimized for question answering with deep learning models for natural language inference in order to tackle the multi-choice question answering in the science domain. For each question-answer pair, we use standard retrieval-based models to find relevant candidate contexts and decompose the main problem into two different sub-problems. First, assign correctness scores for each candidate answer based on the context using retrieval models from Lucene. Second, we use deep learning architectures to compute if a candidate answer can be inferred from some well-chosen context consisting of sentences retrieved from the knowledge base. In the end, all these solvers are combined using a simple neural network to predict the correct answer. This proposed two-step model outperforms the best retrieval-based solver by over 3% in absolute accuracy.Comment: 8 pages, 2 figures, 8 tables, accepted at IJCNN 201

    Quick and (not so) Dirty: Unsupervised Selection of Justification Sentences for Multi-hop Question Answering

    Full text link
    We propose an unsupervised strategy for the selection of justification sentences for multi-hop question answering (QA) that (a) maximizes the relevance of the selected sentences, (b) minimizes the overlap between the selected facts, and (c) maximizes the coverage of both question and answer. This unsupervised sentence selection method can be coupled with any supervised QA approach. We show that the sentences selected by our method improve the performance of a state-of-the-art supervised QA model on two multi-hop QA datasets: AI2's Reasoning Challenge (ARC) and Multi-Sentence Reading Comprehension (MultiRC). We obtain new state-of-the-art performance on both datasets among approaches that do not use external resources for training the QA system: 56.82% F1 on ARC (41.24% on Challenge and 64.49% on Easy) and 26.1% EM0 on MultiRC. Our justification sentences have higher quality than the justifications selected by a strong information retrieval baseline, e.g., by 5.4% F1 in MultiRC. We also show that our unsupervised selection of justification sentences is more stable across domains than a state-of-the-art supervised sentence selection method.Comment: Published at EMNLP-IJCNLP 2019 as long conference paper. Corrected the name reference for Speer et.al, 201
    • …
    corecore