5 research outputs found

    Fragmentation in storage systems with duplicate elimination

    Get PDF
    Deduplication inevitably results in data fragmentation, because logically continuous data is scattered across many disk locations. Even though this significantly increases restore time from backup, the problem is still not well examined. In this work I close this gap by designing algorithms that reduce negative impact of fragmentation on restore time for two major types of fragmentation: internal and inter-version.Internal stream fragmentation is caused by the blocks appearing many times within a single backup. Such phenomenon happens surprisingly often and can result in even three times lower restore bandwidth. With an algorithm utilizing available forward knowledge to enable efficient caching I managed to improve this result on average by 62%-88% with only about 5% extra memory used. Although these results are achieved with limited forward knowledge, they are very close to the ones measured with no such limitation.Inter-version fragmentation is caused by duplicates from previous backups of the same backup set. Since such duplicates are very common due to repeated full backups containing a lot of unchanged data, this type of fragmentation may double the restore time after even a few backups. The context-based rewriting algorithm minimizes this effect by selectively rewriting a small percentage of duplicates during backup, limiting the bandwidth drop from 21.3% to 2.48% on average with only small increase in writing time and temporary space overhead.The two algorithms combined end up in a very effective symbiosis resulting in an average 142% restore bandwidth increase with standard 256MB of per-stream cache memory. In many cases such setup achieves results close to the theoretical maximum achievable with unlimited cache size. Moreover, all the above experiments where performed assuming only one spindle, even though in majority of today’s systems many spindles are used. In a sample setup with ten spindles, the restore bandwidth results are on average 5 times higher than in standard LRU case.Fragmentacja jest nieuniknioną konsekwencją deduplikacji, ponieważ pojedynczy strumień danych rozrzucany jest pomiędzy wiele lokalizacji na dysku. Fakt ten powoduje znaczące wydłużenie czasu odzyskiwania danych z kopii zapasowych. Mimo to, problem wciąż nie jest dobrze zbadany. Niniejsza praca wypełnia tę lukę poprzez propozycje algorytmów, które redukują negatywny wpływ fragmentacji na czas odczytu dla dwóch najważniejszych jej rodzajów: wewnętrznej fragmentacji strumienia oraz fragmentacji pomiędzy różnymi wersjami danych.Wewnętrzna fragmentacja strumienia jest spowodowana blokami powtarzającymi się wielokrotnie w pojedynczym strumieniu danych. To zjawisko zdarza się zaskakująco często i powoduje nawet trzykrotnie niższą wydaj-ność odczytu. Proponowany w tej pracy algorytm efektywnego zarządzania pamięcią, wykorzystujący dostępną wiedzę o danych, jest w stanie podnieść wydajność odczytu o 62-88%, używając przy tym tylko 5% dodatkowej pamięci.Fragmentacja pomiędzy różnymi wersjami danych jest spowodowana duplikatami pochodzącymi z wcześniejszych zapisów tego samego zbioru danych. Ponieważ pełne kopie zapasowe tworzone są regularnie i zawierają duże ilości powtarzających się danych, takie duplikaty występują bardzo często. W przypadku późniejszego odczytu, ich obecność może powodować nawet podwojenie czasu potrzebnego na odzyskanie danych, po utworzeniu zaledwie kilku kopii zapasowych. Algorytm przepisywania kontekstowego minimalizuje ten efekt przez selektywne przepisywanie małej ilości duplikatów podczas zapisu. Takie postępowanie jest w stanie ograniczyć średni spadek wydajności odczytu z 21,3% do 2,48%, kosztem minimalnego zwiększenia czasu zapisudanych i wymagania niewielkiej przestrzeni dyskowej na pamięć tymczasową.Obydwa algorytmy użyte razem działają jeszcze wydajniej, poprawiając przepustowość odczytu przeciętnie o 142% przy standardowej ilości 256MB pamięci cache dla każdego strumienia. Dodatkowo, ponieważ powyższe wyniki zakładają odczyt z jednego dysku, przeprowadzone zostały testy symulujące korzystanie z przepustowości wielu dysków, gdyż takie konfiguracje są bardzo częste w dzisiejszych systemach. Dla przykładu, używając dziecięciu dysków i proponowanych algorytmów, można osiągnąć średnio pięciokrotnie wyższą wydajność niż w standardowym podejściu z algorytmem typu LRU

    Preface

    Get PDF
    corecore