25 research outputs found

    ESIA: An Efficient and Stable Identity Authentication for Internet of Vehicles

    Full text link
    Decentralized, tamper-proof blockchain is regarded as a solution to a challenging authentication issue in the Internet of Vehicles (IoVs). However, the consensus time and communication overhead of blockchain increase significantly as the number of vehicles connected to the blockchain. To address this issue, vehicular fog computing has been introduced to improve efficiency. However, existing studies ignore several key factors such as the number of vehicles in the fog computing system, which can impact the consensus communication overhead. Meanwhile, there is no comprehensive study on the stability of vehicular fog composition. The vehicle movement will lead to dynamic changes in fog. If the composition of vehicular fog is unstable, the blockchain formed by this fog computing system will be unstable, which can affect the consensus efficiency. With the above considerations, we propose an efficient and stable identity authentication (ESIA) empowered by hierarchical blockchain and fog computing. By grouping vehicles efficiently, ESIA has low communication complexity and achieves high stability. Moreover, to enhance the consensus security of the hierarchical blockchain, the consensus process is from the bottom layer to the up layer (bottom-up), which we call B2UHChain. Through theoretical analysis and simulation verification, our scheme achieves the design goals of high efficiency and stability while significantly improving the IoV scalability to the power of 1.5 (^1.5) under similar security to a single-layer blockchain. In addition, ESIA has less communication and computation overhead, lower latency, and higher throughput than other baseline authentication schemes

    Efficient Rate-Splitting Multiple Access for the Internet of Vehicles: Federated Edge Learning and Latency Minimization

    Full text link
    Rate-Splitting Multiple Access (RSMA) has recently found favour in the multi-antenna-aided wireless downlink, as a benefit of relaxing the accuracy of Channel State Information at the Transmitter (CSIT), while in achieving high spectral efficiency and providing security guarantees. These benefits are particularly important in high-velocity vehicular platoons since their high Doppler affects the estimation accuracy of the CSIT. To tackle this challenge, we propose an RSMA-based Internet of Vehicles (IoV) solution that jointly considers platoon control and FEderated Edge Learning (FEEL) in the downlink. Specifically, the proposed framework is designed for transmitting the unicast control messages within the IoV platoon, as well as for privacy-preserving FEEL-aided downlink Non-Orthogonal Unicasting and Multicasting (NOUM). Given this sophisticated framework, a multi-objective optimization problem is formulated to minimize both the latency of the FEEL downlink and the deviation of the vehicles within the platoon. To efficiently solve this problem, a Block Coordinate Descent (BCD) framework is developed for decoupling the main multi-objective problem into two sub-problems. Then, for solving these non-convex sub-problems, a Successive Convex Approximation (SCA) and Model Predictive Control (MPC) method is developed for solving the FEEL-based downlink problem and platoon control problem, respectively. Our simulation results show that the proposed RSMA-based IoV system outperforms the conventional systems
    corecore