20,429 research outputs found

    Reinforcement Learning With Temporal Logic Rewards

    Full text link
    Reinforcement learning (RL) depends critically on the choice of reward functions used to capture the de- sired behavior and constraints of a robot. Usually, these are handcrafted by a expert designer and represent heuristics for relatively simple tasks. Real world applications typically involve more complex tasks with rich temporal and logical structure. In this paper we take advantage of the expressive power of temporal logic (TL) to specify complex rules the robot should follow, and incorporate domain knowledge into learning. We propose Truncated Linear Temporal Logic (TLTL) as specifications language, that is arguably well suited for the robotics applications, together with quantitative semantics, i.e., robustness degree. We propose a RL approach to learn tasks expressed as TLTL formulae that uses their associated robustness degree as reward functions, instead of the manually crafted heuristics trying to capture the same specifications. We show in simulated trials that learning is faster and policies obtained using the proposed approach outperform the ones learned using heuristic rewards in terms of the robustness degree, i.e., how well the tasks are satisfied. Furthermore, we demonstrate the proposed RL approach in a toast-placing task learned by a Baxter robot

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    The computer integrated documentation project: A merge of hypermedia and AI techniques

    Get PDF
    To generate intelligent indexing that allows context-sensitive information retrieval, a system must be able to acquire knowledge directly through interaction with users. In this paper, we present the architecture for CID (Computer Integrated Documentation). CID is a system that enables integration of various technical documents in a hypertext framework and includes an intelligent browsing system that incorporates indexing in context. CID's knowledge-based indexing mechanism allows case based knowledge acquisition by experimentation. It utilizes on-line user information requirements and suggestions either to reinforce current indexing in case of success or to generate new knowledge in case of failure. This allows CID's intelligent interface system to provide helpful responses, based on previous experience (user feedback). We describe CID's current capabilities and provide an overview of our plans for extending the system
    • …
    corecore