1,932 research outputs found

    Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

    Full text link
    Deep learning tools have gained tremendous attention in applied machine learning. However such tools for regression and classification do not capture model uncertainty. In comparison, Bayesian models offer a mathematically grounded framework to reason about model uncertainty, but usually come with a prohibitive computational cost. In this paper we develop a new theoretical framework casting dropout training in deep neural networks (NNs) as approximate Bayesian inference in deep Gaussian processes. A direct result of this theory gives us tools to model uncertainty with dropout NNs -- extracting information from existing models that has been thrown away so far. This mitigates the problem of representing uncertainty in deep learning without sacrificing either computational complexity or test accuracy. We perform an extensive study of the properties of dropout's uncertainty. Various network architectures and non-linearities are assessed on tasks of regression and classification, using MNIST as an example. We show a considerable improvement in predictive log-likelihood and RMSE compared to existing state-of-the-art methods, and finish by using dropout's uncertainty in deep reinforcement learning.Comment: 12 pages, 6 figures; fixed a mistake with standard error and added a new table with updated results (marked "Update [October 2016]"); Published in ICML 201

    Synthesizing Neural Network Controllers with Probabilistic Model based Reinforcement Learning

    Full text link
    We present an algorithm for rapidly learning controllers for robotics systems. The algorithm follows the model-based reinforcement learning paradigm, and improves upon existing algorithms; namely Probabilistic learning in Control (PILCO) and a sample-based version of PILCO with neural network dynamics (Deep-PILCO). We propose training a neural network dynamics model using variational dropout with truncated Log-Normal noise. This allows us to obtain a dynamics model with calibrated uncertainty, which can be used to simulate controller executions via rollouts. We also describe set of techniques, inspired by viewing PILCO as a recurrent neural network model, that are crucial to improve the convergence of the method. We test our method on a variety of benchmark tasks, demonstrating data-efficiency that is competitive with PILCO, while being able to optimize complex neural network controllers. Finally, we assess the performance of the algorithm for learning motor controllers for a six legged autonomous underwater vehicle. This demonstrates the potential of the algorithm for scaling up the dimensionality and dataset sizes, in more complex control tasks.Comment: 8 pages, 7 figure

    Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks

    Full text link
    We present weight normalization: a reparameterization of the weight vectors in a neural network that decouples the length of those weight vectors from their direction. By reparameterizing the weights in this way we improve the conditioning of the optimization problem and we speed up convergence of stochastic gradient descent. Our reparameterization is inspired by batch normalization but does not introduce any dependencies between the examples in a minibatch. This means that our method can also be applied successfully to recurrent models such as LSTMs and to noise-sensitive applications such as deep reinforcement learning or generative models, for which batch normalization is less well suited. Although our method is much simpler, it still provides much of the speed-up of full batch normalization. In addition, the computational overhead of our method is lower, permitting more optimization steps to be taken in the same amount of time. We demonstrate the usefulness of our method on applications in supervised image recognition, generative modelling, and deep reinforcement learning

    A Flexible Approach to Automated RNN Architecture Generation

    Full text link
    The process of designing neural architectures requires expert knowledge and extensive trial and error. While automated architecture search may simplify these requirements, the recurrent neural network (RNN) architectures generated by existing methods are limited in both flexibility and components. We propose a domain-specific language (DSL) for use in automated architecture search which can produce novel RNNs of arbitrary depth and width. The DSL is flexible enough to define standard architectures such as the Gated Recurrent Unit and Long Short Term Memory and allows the introduction of non-standard RNN components such as trigonometric curves and layer normalization. Using two different candidate generation techniques, random search with a ranking function and reinforcement learning, we explore the novel architectures produced by the RNN DSL for language modeling and machine translation domains. The resulting architectures do not follow human intuition yet perform well on their targeted tasks, suggesting the space of usable RNN architectures is far larger than previously assumed

    Input-to-Output Gate to Improve RNN Language Models

    Full text link
    This paper proposes a reinforcing method that refines the output layers of existing Recurrent Neural Network (RNN) language models. We refer to our proposed method as Input-to-Output Gate (IOG). IOG has an extremely simple structure, and thus, can be easily combined with any RNN language models. Our experiments on the Penn Treebank and WikiText-2 datasets demonstrate that IOG consistently boosts the performance of several different types of current topline RNN language models.Comment: Accepted as a conference paper in IJCNLP 201

    Large-Scale Visual Active Learning with Deep Probabilistic Ensembles

    Full text link
    Annotating the right data for training deep neural networks is an important challenge. Active learning using uncertainty estimates from Bayesian Neural Networks (BNNs) could provide an effective solution to this. Despite being theoretically principled, BNNs require approximations to be applied to large-scale problems, where both performance and uncertainty estimation are crucial. In this paper, we introduce Deep Probabilistic Ensembles (DPEs), a scalable technique that uses a regularized ensemble to approximate a deep BNN. We conduct a series of large-scale visual active learning experiments to evaluate DPEs on classification with the CIFAR-10, CIFAR-100 and ImageNet datasets, and semantic segmentation with the BDD100k dataset. Our models require significantly less training data to achieve competitive performances, and steadily improve upon strong active learning baselines as the annotation budget is increased.Comment: arXiv admin note: text overlap with arXiv:1811.0264

    Deep Reinforcement Learning with Pre-training for Time-efficient Training of Automatic Speech Recognition

    Full text link
    Deep reinforcement learning (deep RL) is a combination of deep learning with reinforcement learning principles to create efficient methods that can learn by interacting with its environment. This has led to breakthroughs in many complex tasks, such as playing the game "Go", that were previously difficult to solve. However, deep RL requires significant training time making it difficult to use in various real-life applications such as Human-Computer Interaction (HCI). In this paper, we study pre-training in deep RL to reduce the training time and improve the performance of Speech Recognition, a popular application of HCI. To evaluate the performance improvement in training we use the publicly available "Speech Command" dataset, which contains utterances of 30 command keywords spoken by 2,618 speakers. Results show that pre-training with deep RL offers faster convergence compared to non-pre-trained RL while achieving improved speech recognition accuracy.Comment: arXiv admin note: substantial text overlap with arXiv:1910.1125

    Multi-Hop Knowledge Graph Reasoning with Reward Shaping

    Full text link
    Multi-hop reasoning is an effective approach for query answering (QA) over incomplete knowledge graphs (KGs). The problem can be formulated in a reinforcement learning (RL) setup, where a policy-based agent sequentially extends its inference path until it reaches a target. However, in an incomplete KG environment, the agent receives low-quality rewards corrupted by false negatives in the training data, which harms generalization at test time. Furthermore, since no golden action sequence is used for training, the agent can be misled by spurious search trajectories that incidentally lead to the correct answer. We propose two modeling advances to address both issues: (1) we reduce the impact of false negative supervision by adopting a pretrained one-hop embedding model to estimate the reward of unobserved facts; (2) we counter the sensitivity to spurious paths of on-policy RL by forcing the agent to explore a diverse set of paths using randomly generated edge masks. Our approach significantly improves over existing path-based KGQA models on several benchmark datasets and is comparable or better than embedding-based models.Comment: Accepted to EMNLP 2018, 12 page

    Improving Robustness of Neural Dialog Systems in a Data-Efficient Way with Turn Dropout

    Full text link
    Neural network-based dialog models often lack robustness to anomalous, out-of-domain (OOD) user input which leads to unexpected dialog behavior and thus considerably limits such models' usage in mission-critical production environments. The problem is especially relevant in the setting of dialog system bootstrapping with limited training data and no access to OOD examples. In this paper, we explore the problem of robustness of such systems to anomalous input and the associated to it trade-off in accuracies on seen and unseen data. We present a new dataset for studying the robustness of dialog systems to OOD input, which is bAbI Dialog Task 6 augmented with OOD content in a controlled way. We then present turn dropout, a simple yet efficient negative sampling-based technique for improving robustness of neural dialog models. We demonstrate its effectiveness applied to Hybrid Code Network-family models (HCNs) which reach state-of-the-art results on our OOD-augmented dataset as well as the original one. Specifically, an HCN trained with turn dropout achieves state-of-the-art performance of more than 75% per-utterance accuracy on the augmented dataset's OOD turns and 74% F1-score as an OOD detector. Furthermore, we introduce a Variational HCN enhanced with turn dropout which achieves more than 56.5% accuracy on the original bAbI Task 6 dataset, thus outperforming the initially reported HCN's result.Comment: NeurIPS 2018 workshop on Conversational A

    Deep Residual Output Layers for Neural Language Generation

    Full text link
    Many tasks, including language generation, benefit from learning the structure of the output space, particularly when the space of output labels is large and the data is sparse. State-of-the-art neural language models indirectly capture the output space structure in their classifier weights since they lack parameter sharing across output labels. Learning shared output label mappings helps, but existing methods have limited expressivity and are prone to overfitting. In this paper, we investigate the usefulness of more powerful shared mappings for output labels, and propose a deep residual output mapping with dropout between layers to better capture the structure of the output space and avoid overfitting. Evaluations on three language generation tasks show that our output label mapping can match or improve state-of-the-art recurrent and self-attention architectures, and suggest that the classifier does not necessarily need to be high-rank to better model natural language if it is better at capturing the structure of the output space.Comment: To appear in ICML 201
    • …
    corecore