16,215 research outputs found

    The University of Glasgow at ImageClefPhoto 2009

    Get PDF
    In this paper we describe the approaches adopted to generate the five runs submitted to ImageClefPhoto 2009 by the University of Glasgow. The aim of our methods is to exploit document diversity in the rankings. All our runs used text statistics extracted from the captions associated to each image in the collection, except one run which combines the textual statistics with visual features extracted from the provided images. The results suggest that our methods based on text captions significantly improve the performance of the respective baselines, while the approach that combines visual features with text statistics shows lower levels of improvements

    Enhancing gravitational wave astronomy with galaxy catalogues

    Full text link
    Joint gravitational wave (GW) and electromagnetic (EM) observations, as a key research direction in multi-messenger astronomy, will provide deep insight into the astrophysics of a vast range of astronomical phenomena. Uncertainties in the source sky location estimate from gravitational wave observations mean follow-up observatories must scan large portions of the sky for a potential companion signal. A general frame of joint GW-EM observations is presented by a multi-messenger observational triangle. Using a Bayesian approach to multi-messenger astronomy, we investigate the use of galaxy catalogue and host galaxy information to reduce the sky region over which follow-up observatories must scan, as well as study its use for improving the inclination angle estimates for coalescing binary compact objects. We demonstrate our method using a simulated neutron stars inspiral signal injected into simulated Advanced detectors noise and estimate the injected signal sky location and inclination angle using the Gravitational Wave Galaxy Catalogue. In this case study, the top three candidates in rank have 72%72\%, 15%15\% and 8%8\% posterior probability of being the host galaxy, receptively. The standard deviation of cosine inclination angle (0.001) of the neutron stars binary using gravitational wave-galaxy information is much smaller than that (0.02) using only gravitational wave posterior samples.Comment: Proceedings of the Sant Cugat Forum on Astrophysics. 2014 Session on 'Gravitational Wave Astrophysics

    qTorch: The Quantum Tensor Contraction Handler

    Full text link
    Classical simulation of quantum computation is necessary for studying the numerical behavior of quantum algorithms, as there does not yet exist a large viable quantum computer on which to perform numerical tests. Tensor network (TN) contraction is an algorithmic method that can efficiently simulate some quantum circuits, often greatly reducing the computational cost over methods that simulate the full Hilbert space. In this study we implement a tensor network contraction program for simulating quantum circuits using multi-core compute nodes. We show simulation results for the Max-Cut problem on 3- through 7-regular graphs using the quantum approximate optimization algorithm (QAOA), successfully simulating up to 100 qubits. We test two different methods for generating the ordering of tensor index contractions: one is based on the tree decomposition of the line graph, while the other generates ordering using a straight-forward stochastic scheme. Through studying instances of QAOA circuits, we show the expected result that as the treewidth of the quantum circuit's line graph decreases, TN contraction becomes significantly more efficient than simulating the whole Hilbert space. The results in this work suggest that tensor contraction methods are superior only when simulating Max-Cut/QAOA with graphs of regularities approximately five and below. Insight into this point of equal computational cost helps one determine which simulation method will be more efficient for a given quantum circuit. The stochastic contraction method outperforms the line graph based method only when the time to calculate a reasonable tree decomposition is prohibitively expensive. Finally, we release our software package, qTorch (Quantum TensOR Contraction Handler), intended for general quantum circuit simulation.Comment: 21 pages, 8 figure

    A Bayesian approach to multi-messenger astronomy: Identification of gravitational-wave host galaxies

    Full text link
    We present a general framework for incorporating astrophysical information into Bayesian parameter estimation techniques used by gravitational wave data analysis to facilitate multi-messenger astronomy. Since the progenitors of transient gravitational wave events, such as compact binary coalescences, are likely to be associated with a host galaxy, improvements to the source sky location estimates through the use of host galaxy information are explored. To demonstrate how host galaxy properties can be included, we simulate a population of compact binary coalescences and show that for ~8.5% of simulations with in 200Mpc, the top ten most likely galaxies account for a ~50% of the total probability of hosting a gravitational wave source. The true gravitational wave source host galaxy is in the top ten galaxy candidates ~10% of the time. Furthermore, we show that by including host galaxy information, a better estimate of the inclination angle of a compact binary gravitational wave source can be obtained. We also demonstrate the flexibility of our method by incorporating the use of either B or K band into our analysis.Comment: 22 pages, 8 figures, accepted for publication in the Ap

    Improving Detectors Using Entangling Quantum Copiers

    Get PDF
    We present a detection scheme which using imperfect detectors, and imperfect quantum copying machines (which entangle the copies), allows one to extract more information from an incoming signal, than with the imperfect detectors alone.Comment: 4 pages, 2 figures, REVTeX, to be published in Phys. Rev.
    • …
    corecore