1,076 research outputs found

    K-Means Fingerprint Clustering for Low-Complexity Floor Estimation in Indoor Mobile Localization

    Full text link
    Indoor localization in multi-floor buildings is an important research problem. Finding the correct floor, in a fast and efficient manner, in a shopping mall or an unknown university building can save the users' search time and can enable a myriad of Location Based Services in the future. One of the most widely spread techniques for floor estimation in multi-floor buildings is the fingerprinting-based localization using Received Signal Strength (RSS) measurements coming from indoor networks, such as WLAN and BLE. The clear advantage of RSS-based floor estimation is its ease of implementation on a multitude of mobile devices at the Application Programming Interface (API) level, because RSS values are directly accessible through API interface. However, the downside of a fingerprinting approach, especially for large-scale floor estimation and positioning solutions, is their need to store and transmit a huge amount of fingerprinting data. The problem becomes more severe when the localization is intended to be done on mobile devices which have limited memory, power, and computational resources. An alternative floor estimation method, which has lower complexity and is faster than the fingerprinting is the Weighted Centroid Localization (WCL) method. The trade-off is however paid in terms of a lower accuracy than the one obtained with traditional fingerprinting with Nearest Neighbour (NN) estimates. In this paper a novel K-means-based method for floor estimation via fingerprint clustering of WiFi and various other positioning sensor outputs is introduced. Our method achieves a floor estimation accuracy close to the one with NN fingerprinting, while significantly improves the complexity and the speed of the floor detection algorithm. The decrease in the database size is achieved through storing and transmitting only the cluster heads (CH's) and their corresponding floor labels.Comment: Accepted to IEEE Globecom 2015, Workshop on Localization and Tracking: Indoors, Outdoors and Emerging Network

    New Cluster Selection and Fine-grained Search for k-Means Clustering and Wi-Fi Fingerprinting

    Get PDF
    Ponencia presentada en 2020 International Conference on Localization and GNSS (ICL-GNSS), 02-04 June 2020, Tampere, FinlandWi-Fi fingerprinting is a popular technique for Indoor Positioning Systems (IPSs) thanks to its low complexity and the ubiquity of WLAN infrastructures. However, this technique may present scalability issues when the reference dataset (radio map) is very large. To reduce the computational costs, k-Means Clustering has been successfully applied in the past. However, it is a general-purpose algorithm for unsupervised classification. This paper introduces three variants that apply heuristics based on radio propagation knowledge in the coarse and fine-grained searches. Due to the heterogeneity either in the IPS side (including radio map generation) and in the network infrastructure, we used an evaluation framework composed of 16 datasets. In terms of general positioning accuracy and computational costs, the best proposed k-means variant provided better general positioning accuracy and a significantly better computational cost –around 40% lower– than the original k-means

    A mixed approach to similarity metric selection in affinity propagation-based WiFi fingerprinting indoor positioning

    Get PDF
    The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms

    Fingerprinting Based Indoor Localization Considering the Dynamic Nature of Wi-Fi Signals

    Get PDF
    Current localization techniques in the outdoors cannot work well in indoors. The Wi-Fi fingerprinting technique is an emerging localization technique for indoor environments. However, in this technique, the dynamic nature of WiFi signals affects the accuracy of the measurements. In this paper, we use the affinity propagation clustering method to decrease the computation complexity in location estimation. Then, we use the least variance of Received Signal Strength (RSS) measured among Access Points (APs) in each cluster. Also, we assign lower weights to alter APs for each point in a cluster, to represent the level of similarity to Test Point (TP) by considering the dynamic nature of signals in indoor environments. A method for updating the radio map and improving the results is then proposed to decrease the cost of constructing the radio map. Simulation results show that the proposed method has 22.5% improvement in average in localization results, considering one altering AP in the layout, compared to the case when only RSS subset sampling is considered for localization because of altering APs
    • …
    corecore