177 research outputs found

    TopologyNet: Topology based deep convolutional neural networks for biomolecular property predictions

    Full text link
    Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the entangled geometric complexity and biological complexity. We introduce topology, i.e., element specific persistent homology (ESPH), to untangle geometric complexity and biological complexity. ESPH represents 3D complex geometry by one-dimensional (1D) topological invariants and retains crucial biological information via a multichannel image representation. It is able to reveal hidden structure-function relationships in biomolecules. We further integrate ESPH and convolutional neural networks to construct a multichannel topological neural network (TopologyNet) for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the limitations to deep learning arising from small and noisy training sets, we present a multitask topological convolutional neural network (MT-TCNN). We demonstrate that the present TopologyNet architectures outperform other state-of-the-art methods in the predictions of protein-ligand binding affinities, globular protein mutation impacts, and membrane protein mutation impacts.Comment: 20 pages, 8 figures, 5 table

    Selected Works in Bioinformatics

    Get PDF
    This book consists of nine chapters covering a variety of bioinformatics subjects, ranging from database resources for protein allergens, unravelling genetic determinants of complex disorders, characterization and prediction of regulatory motifs, computational methods for identifying the best classifiers and key disease genes in large-scale transcriptomic and proteomic experiments, functional characterization of inherently unfolded proteins/regions, protein interaction networks and flexible protein-protein docking. The computational algorithms are in general presented in a way that is accessible to advanced undergraduate students, graduate students and researchers in molecular biology and genetics. The book should also serve as stepping stones for mathematicians, biostatisticians, and computational scientists to cross their academic boundaries into the dynamic and ever-expanding field of bioinformatics

    Binding Affinity and Specificity of SH2 Domain Interactions in Receptor Tyrosine Kinase Signaling Networks

    Get PDF
    Receptor tyrosine kinase (RTK) signaling mechanisms play a central role in intracellular signaling and control development of multicellular organisms, cell growth, cell migration, and programmed cell death. Dysregulation of these signaling mechanisms results in defects of development and diseases such as cancer. Control of this network relies on the specificity and selectivity of Src Homology 2 (SH2) domain interactions with phosphorylated target peptides. In this work, we review and identify the limitations of current quantitative understanding of SH2 domain interactions, and identify severe limitations in accuracy and availability of SH2 domain interaction data. We propose a framework to address some of these limitations and present new results which improve the quality and accuracy of currently available data. Furthermore, we supplement published results with a large body of negative interactions of high-confidence extracted from rejected data, allowing for improved modeling and prediction of SH2 interactions. We present and analyze new experimental results for the dynamic response of downstream signaling proteins in response to RTK signaling. Our data identify differences in downstream response depending on the character and dose of the receptor stimulus, which has implications for previous studies using high-dose stimulation. We review some of the methods used in this work, focusing on pitfalls of clustering biological data, and address the high-dimensional nature of biological data from high-throughput experiments, the failure to consider more than one clustering method for a given problem, and the difficulty in determining whether clustering has produced meaningful results

    Advances in Molecular Simulation

    Get PDF
    Molecular simulations are commonly used in physics, chemistry, biology, material science, engineering, and even medicine. This book provides a wide range of molecular simulation methods and their applications in various fields. It reflects the power of molecular simulation as an effective research tool. We hope that the presented results can provide an impetus for further fruitful studies

    Discovery of a new generation of angiotensin receptor blocking drugs:Receptor mechanisms and in silico binding to enzymes relevant to SARS-CoV-2

    Get PDF
    The discovery and facile synthesis of a new class of sartan-like arterial antihypertensive drugs (angiotensin receptor blockers [ARBs]), subsequently referred to as “bisartans” is reported. In vivo results and complementary molecular modelling presented in this communication indicate bisartans may be beneficial for the treatment of not only heart disease, diabetes, renal dysfunction, and related illnesses, but possibly COVID-19. Bisartans are novel bis-alkylated imidazole sartan derivatives bearing dual symmetric anionic biphenyl tetrazole moieties. In silico docking and molecular dynamics studies revealed bisartans exhibited higher binding affinities for the ACE2/spike protein complex (PDB 6LZG) compared to all other known sartans. They also underwent stable docking to the Zn2+ domain of the ACE2 catalytic site as well as the critical interfacial region between ACE2 and the SARS-CoV-2 receptor binding domain. Additionally, semi-stable docking of bisartans at the arginine-rich furin-cleavage site of the SARS-CoV-2 spike protein (residues 681–686) required for virus entry into host cells, suggest bisartans may inhibit furin action thereby retarding viral entry into host cells. Bisartan tetrazole groups surpass nitrile, the pharmacophoric “warhead” of PF-07321332, in its ability to disrupt the cysteine charge relay system of 3CLpro. However, despite the apparent targeting of multifunctional sites, bisartans do not inhibit SARS-CoV-2 infection in bioassays as effectively as PF-07321332 (Paxlovid)

    COMPUTATIONAL TECHNIQUES TO EVALUATE AT ATOMIC LEVEL THE MECHANISM OF MOLECULAR BINDING

    Get PDF
    Integrins are an important class of transmembrane receptors that relay signals bidirectionally across the plasma membrane, regulating several cell functions and playing a key role in diverse pathological processes. Specifically, integrin subtype \u3b1IIb\u3b23 is involved in thrombosis and stroke, while subtypes \u3b1v\u3b23 and \u3b15\u3b21 play an important role in angiogenesis and tumor progression. They therefore emerged as attractive pharmacological targets. In the past decades several peptides and peptidomimetics targeting these proteins and based on the integrin recognition motif RGD (Arg-Gly-Asp) have been developed, whereby their affinity and selectivity for a specific integrin subtype have been fine-tuned by modulation of RGD flanking residues, by cyclization or by introduction of chemical modifications. Thus far, the design and development of RGD-based cyclopeptides have been mainly based on empirical approaches, requiring expensive and time-consuming synthesis campaigns. In this field, the employment of computational tools, that could be valuable to accelerate the drug design and optimization process, has been limited by the inherent difficulties to predict in silico the three-dimensional structure and the inhibitory activity of cyclopeptides. However, recent improvements in both computational resources and in docking and modeling techniques are expected to open new perspectives in the development of cyclopeptides as modulators of protein-protein interactions and, particularly, as integrin inhibitors. Within this PhD project, I have investigated the applicability of computational techniques in predicting and rationalizing how the environment of the recognition-motif in cyclopeptides (i.e. flanking residues and introduction of chemical modification) could influence their integrin affinity and selectivity. These features can regulate integrin affinity both by favoring direct interactions with the receptor and/or by modulating the three-dimensional conformation properties of the recognition motif. To take into account both these aspects, I have proposed and optimized a multi-stage computational protocol in which an exhaustive conformational sampling of the investigated cyclopeptides is followed by docking calculations and re-scoring techniques. Specifically: i) the exhaustive sampling could be achieved by using Metadynamics in its Bias Exchange variant (BE-META), an enhanced sampling technique which represents a valuable methodology for the acceleration of rare events, allowing to cross the high free energy barriers characteristic of cyclopeptides and providing reliable estimations of the populations of the accessible conformers. ii) The docking calculations, complemented with the re-scoring technique MM-GB/SA (Molecular Mechanics Generalized Born Surface Area) and the cluster analysis of the decoy poses, allow to evaluate the ability of each peptide to engage interactions with the receptors and to rank the docking poses according to their binding ability; iii) a joint analysis of the previous outcomes results in a reliable ranking of cyclopeptides based on their binding affinity and in the rationalization of their structure-activity relationship. This computational protocol has been exploited in two different applications, illustrated within the thesis. In the first application the protocol has been applied to rationalize how the introduction of chemical modifications, specifically backbone N-methylation, impacts on the equilibrium conformation and consequently on the integrin affinity of five RGD containing cyclic hexapeptides, which were previously generated by the group of professor Kessler to modulate their selectivity for \u3b1IIb\u3b23 integrin. The study revealed that backbone N-methylation affects the preferences of the \u3c6 dihedral angle of the methylated residue, specifically favoring the adoption of additional conformations, characterized by a 180\ub0 twist of the peptide bond plane preceding the methylated residue. These twists of dihedral angles were found to have relevant consequences on the cyclopeptides conformation, influencing the formation of intra-molecular hydrogen bonds as well as some structural features which are known to be fundamental in integrin binding. Both structural analysis and docking calculations allowed to identify the \u201cbioactive\u201d conformation (i.e. an extended RGD conformation able to recapitulate the canonical electrostatic and the additional stabilizing hydrophobic interactions). Of note, the cyclopeptides that are pre-organized, already in their free state, in this bioactive conformation are the ones displaying the best \u3b1IIb\u3b23 binding affinity in terms of IC50 values, confirming that pre-organization of cyclopeptides in solution can strongly affect their binding strength to the receptor and demonstrating that the knowledge of their conformational equilibrium is fundamental to provide reliable affinity predictions. In the second application, I have focused my attention on cyclopeptides harboring a recently discovered integrin recognition motif: isoDGR (isoAsp-Gly-Arg), deriving from the spontaneous deamidation of NGR (Asp-Gly-Arg) sequence present in integrin natural ligands. As a preliminary step, I have systematically tested the accuracy of eight Molecular Mechanics force fields in reproducing the equilibrium properties of isoDGR-based cyclopeptides, for which NMR experiments have been acquired. The comparison between simulated and NMR-derived data (i.e. chemical shifts and J scalar couplings) revealed that, while most of the investigated force fields can properly reproduce the equilibrium conformational properties of cyclic peptides, only two of them (i.e. the AMBER force fields ff99sb-ildn and ff99sb*-ildn) are able to recover the NMR observables characteristics of the non-standard residue isoAspartate with an accuracy close to the systematic uncertainty. Overall, these results suggest that the transferability of force field parameters to non standard amino acids is not straightforward. However, two force fields allowed to obtain a satisfactory accuracy and have been therefore employed for the subsequent investigation. I thus applied the computational protocol to rationalize the diverse selectivity and affinity profiles for integrins \u3b1v\u3b23 and \u3b15\u3b21, both related to cancer, displayed by three isoDGR-based cyclic hexapeptides. These molecules differ in the residues flanking the isoDGR motif and show appealing tumor-homing properties; specifically it has been shown that one of these, c(CGisoDGRG), can be coupled with human serum albumin through a chemical linker to be used as a drug delivery agent for functionalized gold nanoparticles. Herein, I investigated the role of the chemical linker in improving affinity and selectivity of c(CGisoDGRG) for \u3b1v\u3b23. The application of the multi-stage protocol allowed to propose an explanation for the different selectivity profiles displayed by these molecules, where the direct interactions engaged by the flanking residues and/or their steric hindrance seem to be largely responsible for the observed different affinities. As a last result, through the combination of MD and NMR techniques, I demonstrated that the chemical linker improved the \u3b1v\u3b23 affinity of c(CGisoDGRG) by engaging direct interactions with the receptor and I proposed two possible complex models, which well-reproduce data from Saturation Transfer Difference experiments. Overall, in this PhD work I have shown that the combination of different computational techniques, BE-META, docking and MM-GB/SA re-scoring, could be a reliable approach to perform structure-activity relationship studies in cyclopeptides. Specifically, the proposed protocol is able to predict the influence of the recognition motif environment (i.e. chemical modification and flanking residues) on integrin affinities. These two features regulate integrin affinity differently: the first one by conformational modulation of the recognition motif, the second by engaging direct interactions with the receptor. Of note, the approach can deal with both these mechanisms of affinity modulation. We expect that the protocol herein described could be used in future to screen novel peptides library or to complement biochemical experiments during the drug optimization stages, assisting organic chemists in the design of more effective integrin-targeting peptides

    Computational Modeling and Automation Techniques to Study Biomolecular Dynamics

    Get PDF
    Physically-principled computational modeling and automation techniques have emerged as potent methodologies in exploring biomolecular dynamics and generating experimentally-testable hypotheses. In this dissertation, we develop a set of simulation automation techniques and present results on case studies of biomolecular simulation. Nucleosomes form the fundamental building blocks of eukaryotic chromatin. We use multiscale modeling and discrete molecular dynamics simulations to investigate the dynamics of the Xenopus laevis nucleosome core particle, the fundamental unit of chromatin. Histone tails are flexible and are poorly resolved in X-ray crystal structures. We probe how molecular-level dynamics of the histone tails, core histones and associated DNA mediate chromatin stability at the scale of single-nucleosomes. Based on the positional fluctuations of core histone residues, we postulate cold sites, a set of core histone residues essential for stabilizing the Xenopus laevis nucleosome core particle. We explore changes in the biophysical stability of mono-nucleosomes by designing mutations in core histones and using Medusa, a high-throughput computational technique to explore changes in mononucleosomal stability resulting from point mutations. The presence of centromere-specific H3 variant histone (Cse4) in centromere-specific nucleosomes defines the kinetochore locus. However, structural details of the centromere-specific nucleosomes remain to be completely understood. We construct a homology model of the Saccharomyces cerevisiae centromeric nucleosome and generate a biophysically-principled C-loop model for elongation of Saccharomyces cerevisiae kinetochore. We present simulation automation techniques by means of two web-based servers: iFold (http://iFold.dokhlab.org) and iFoldRNA (http://iFoldRNA.dokhlab.org). iFold enables automated simulations of protein folding, unfolding using discrete molecular dynamics. iFoldRNA enables ab initio RNA structure prediction using replica-exchange discrete molecular dynamics simulations. We also demonstrate rapid and accurate three-dimensional structure prediction of over 150 RNA molecules. We used all-atom molecular dynamics simulations to study the mechanistic and structural differences between two anticancer therapeutics - cisplatin and oxaliplatin. Our simulations suggest that the cisplatinated- and oxaliplatinated- DNA cause differential effects on the dynamics and bending propensities of adducted DNA. This study suggest a role of differential bending propensities in the efficacies of oxaliplatin and cisplatin. In summary, the research presented in this dissertation helps us understand the mechanisms of biomolecular interactions at atomic and mesoscale levels. This dissertation adds to scientific knowledge by a set of methodologies for exploring the dynamics of protein and RNA molecules. Physically-principled simulations of the nucleosome core particle yield experimentally-testable hypotheses on chromatin structure and function

    Computational ligand design and analysis in protein complexes using inverse methods, combinatorial search, and accurate solvation modeling

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2006.Vita.Includes bibliographical references (p. 207-230).This thesis presents the development and application of several computational techniques to aid in the design and analysis of small molecules and peptides that bind to protein targets. First, an inverse small-molecule design algorithm is presented that can explore the space of ligands compatible with binding to a target protein using fast combinatorial search methods. The inverse design method was applied to design inhibitors of HIV-1 protease that should be less likely to induce resistance mutations because they fit inside a consensus substrate envelope. Fifteen designed inhibitors were chemically synthesized, and four of the tightest binding compounds to the wild-type protease exhibited broad specificity against a panel of drug resistance mutant proteases in experimental tests. Inverse protein design methods and charge optimization were also applied to improve the binding affinity of a substrate peptide for an inactivated mutant of HIV-1 protease, in an effort to learn more about the thermodynamics and mechanisms of peptide binding. A single mutant peptide calculated to have improved binding electrostatics exhibited greater than 10-fold improved affinity experimentally.(cont.) The second half of this thesis presents an accurate method for evaluating the electrostatic component of solvation and binding in molecular systems, based on curved boundary-element method solutions of the linearized Poisson-Boltzmann equation. Using the presented FFTSVD matrix compression algorithm and other techniques, a full linearized Poisson-Boltzmann equation solver is described that is capable of solving multi-region problems in molecular continuum electrostatics to high precision.Michael Darren Altman.Ph.D
    • …
    corecore