19,726 research outputs found

    The Challenge of Non-Technical Loss Detection using Artificial Intelligence: A Survey

    Get PDF
    Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in electrical engineering and computer science. NTLs cause significant harm to the economy, as in some countries they may range up to 40% of the total electricity distributed. The predominant research direction is employing artificial intelligence to predict whether a customer causes NTL. This paper first provides an overview of how NTLs are defined and their impact on economies, which include loss of revenue and profit of electricity providers and decrease of the stability and reliability of electrical power grids. It then surveys the state-of-the-art research efforts in a up-to-date and comprehensive review of algorithms, features and data sets used. It finally identifies the key scientific and engineering challenges in NTL detection and suggests how they could be addressed in the future

    Using Self-Contradiction to Learn Confidence Measures in Stereo Vision

    Get PDF
    Learned confidence measures gain increasing importance for outlier removal and quality improvement in stereo vision. However, acquiring the necessary training data is typically a tedious and time consuming task that involves manual interaction, active sensing devices and/or synthetic scenes. To overcome this problem, we propose a new, flexible, and scalable way for generating training data that only requires a set of stereo images as input. The key idea of our approach is to use different view points for reasoning about contradictions and consistencies between multiple depth maps generated with the same stereo algorithm. This enables us to generate a huge amount of training data in a fully automated manner. Among other experiments, we demonstrate the potential of our approach by boosting the performance of three learned confidence measures on the KITTI2012 dataset by simply training them on a vast amount of automatically generated training data rather than a limited amount of laser ground truth data.Comment: This paper was accepted to the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. The copyright was transfered to IEEE (https://www.ieee.org). The official version of the paper will be made available on IEEE Xplore (R) (http://ieeexplore.ieee.org). This version of the paper also contains the supplementary material, which will not appear IEEE Xplore (R

    Automatic Quality Estimation for ASR System Combination

    Get PDF
    Recognizer Output Voting Error Reduction (ROVER) has been widely used for system combination in automatic speech recognition (ASR). In order to select the most appropriate words to insert at each position in the output transcriptions, some ROVER extensions rely on critical information such as confidence scores and other ASR decoder features. This information, which is not always available, highly depends on the decoding process and sometimes tends to over estimate the real quality of the recognized words. In this paper we propose a novel variant of ROVER that takes advantage of ASR quality estimation (QE) for ranking the transcriptions at "segment level" instead of: i) relying on confidence scores, or ii) feeding ROVER with randomly ordered hypotheses. We first introduce an effective set of features to compensate for the absence of ASR decoder information. Then, we apply QE techniques to perform accurate hypothesis ranking at segment-level before starting the fusion process. The evaluation is carried out on two different tasks, in which we respectively combine hypotheses coming from independent ASR systems and multi-microphone recordings. In both tasks, it is assumed that the ASR decoder information is not available. The proposed approach significantly outperforms standard ROVER and it is competitive with two strong oracles that e xploit prior knowledge about the real quality of the hypotheses to be combined. Compared to standard ROVER, the abs olute WER improvements in the two evaluation scenarios range from 0.5% to 7.3%

    Support Vector Machine Approach for Non-Technical Losses Identification in Power Distribution Systems

    Get PDF
    Electricity consumer fraud is a problem faced by all power utilities. Finding efficient measurements for detecting fraudulent electricity consumption has been an active research area in recent years. In this paper,the approach towards nontechnical loss (NTL) detection in power utilities using an artificial intelligence based technique, Support Vector Machine (SVM), are presented. This approach provides a method of data mining, which involves feature extraction from past consumption data. This SVM based approach uses customer load profile information and additional attributes to expose abnormal behavior that is known to be highly correlated with NTL activities. Some key advantages of SVM in data clustering, among which is the easy way of using them to fit the data of a wide range of features are discussed here. Finally, some major weakness of using SVM in clustering for NTL identification are identified, which leads to motivate for the scope of Optimum-Path Forest, a new model of NTL identification

    Estimating moose population parameters from aerial surveys

    Get PDF
    Successful moose management depends on knowledge of population dynamics. The principal parameters required are size, rate of change, recruitment, sex composition, and mortality. Moose management in Alaska has been severely hampered by the lack of good estimates of these parameters, and unfortunately, this lack contributed to the decline of many Alaskan moose populations during the 1970s (e.g., Gasaway et al. 1983). The problems were: (1) population size not adequately estimated, (2) rapid rates of decline not acknowledged until populations were low, (3) meaningful recruitment rates were not available in the absence of good population estimates, and (4) calf and adult mortality rates were grossly underestimated. Frustration of moose managers working with inadequate data led to development of aerial survey procedures that yield minimally biased, sufficiently precise estimates of population parameters for most Alaskan moose management and research. This manual describes these procedures. Development of these procedures would have been impossible without the inspiration, support, advice, and criticism of many colleagues. We thank these colleagues for their contributions. Dale Haggstrom and Dave Kelleyhouse helped develop flight patterns, tested and improved early sampling designs, and as moose managers, put these procedures into routine use. Pilots Bill Lentsch and Pete Haggland were instrumental in developing and testing aerial surveying techniques. Their interest and dedication to improving moose management made them valuable allies. Statisticians Dana Thomas of the University of Alaska and W. Scott Overton of Oregon State University provided advice on variance approximations for the population estimator. Warren Ballard, Sterling Miller, SuzAnne Miller, Doug Larsen, and Wayne Kale tested procedures and provided valuable criticisms and suggestions. Jim Raymond initially programmed a portable calculator to make lengthy calculation simple, fast, and error-free. Angie Babcock, Lisa Ingalls, Vicky Leffingwell, and Laura McManus patiently typed several versions of this manual. John Coady and Oliver Burris provided continuous moral and financial support for a 3-year project that lasted 6 years. Joan Barnett, Rodney Boetje, Steven Peterson, and Wayne Regelin of the Alaska Department of Fish and Game provided helpful editorial suggestions in previous drafts. Finally, we thank referees David Anderson of the Utah Cooperative Wildlife Research Unit, Vincent Schultz of Washington State University, and James Peek, E. "Oz" Garton, and Mike Samuel of the University of Idaho whose comments and suggestions improved this manual. This project was funded by the Alaska Department of Fish and Game through Federal Aid in Wildlife Restoration Projects W-17-9 through W-22-1

    Melding the Data-Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization

    Full text link
    Creating impact in real-world settings requires artificial intelligence techniques to span the full pipeline from data, to predictive models, to decisions. These components are typically approached separately: a machine learning model is first trained via a measure of predictive accuracy, and then its predictions are used as input into an optimization algorithm which produces a decision. However, the loss function used to train the model may easily be misaligned with the end goal, which is to make the best decisions possible. Hand-tuning the loss function to align with optimization is a difficult and error-prone process (which is often skipped entirely). We focus on combinatorial optimization problems and introduce a general framework for decision-focused learning, where the machine learning model is directly trained in conjunction with the optimization algorithm to produce high-quality decisions. Technically, our contribution is a means of integrating common classes of discrete optimization problems into deep learning or other predictive models, which are typically trained via gradient descent. The main idea is to use a continuous relaxation of the discrete problem to propagate gradients through the optimization procedure. We instantiate this framework for two broad classes of combinatorial problems: linear programs and submodular maximization. Experimental results across a variety of domains show that decision-focused learning often leads to improved optimization performance compared to traditional methods. We find that standard measures of accuracy are not a reliable proxy for a predictive model's utility in optimization, and our method's ability to specify the true goal as the model's training objective yields substantial dividends across a range of decision problems.Comment: Full version of paper accepted at AAAI 201

    Using Unmanned Aerial Systems for Deriving Forest Stand Characteristics in Mixed Hardwoods of West Virginia

    Get PDF
    Forest inventory information is a principle driver for forest management decisions. Information gathered through these inventories provides a summary of the condition of forested stands. The method by which remote sensing aids land managers is changing rapidly. Imagery produced from unmanned aerial systems (UAS) offer high temporal and spatial resolutions to small-scale forest management. UAS imagery is less expensive and easier to coordinate to meet project needs compared to traditional manned aerial imagery. This study focused on producing an efficient and approachable work flow for producing forest stand board volume estimates from UAS imagery in mixed hardwood stands of West Virginia. A supplementary aim of this project was to evaluate which season was best to collect imagery for forest inventory. True color imagery was collected with a DJI Phantom 3 Professional UAS and was processed in Agisoft Photoscan Professional. Automated tree crown segmentation was performed with Trimble eCognition Developer’s multi-resolution segmentation function with manual optimization of parameters through an iterative process. Individual tree volume metrics were derived from field data relationships and volume estimates were processed in EZ CRUZ forest inventory software. The software, at best, correctly segmented 43% of the individual tree crowns. No correlation between season of imagery acquisition and quality of segmentation was shown. Volume and other stand characteristics were not accurately estimated and were faulted by poor segmentation. However, the imagery was able to capture gaps consistently and provide a visualization of forest health. Difficulties, successes and time required for these procedures were thoroughly noted

    Investigation related to multispectral imaging systems

    Get PDF
    A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community
    • …
    corecore