116 research outputs found

    A survey on online active learning

    Full text link
    Online active learning is a paradigm in machine learning that aims to select the most informative data points to label from a data stream. The problem of minimizing the cost associated with collecting labeled observations has gained a lot of attention in recent years, particularly in real-world applications where data is only available in an unlabeled form. Annotating each observation can be time-consuming and costly, making it difficult to obtain large amounts of labeled data. To overcome this issue, many active learning strategies have been proposed in the last decades, aiming to select the most informative observations for labeling in order to improve the performance of machine learning models. These approaches can be broadly divided into two categories: static pool-based and stream-based active learning. Pool-based active learning involves selecting a subset of observations from a closed pool of unlabeled data, and it has been the focus of many surveys and literature reviews. However, the growing availability of data streams has led to an increase in the number of approaches that focus on online active learning, which involves continuously selecting and labeling observations as they arrive in a stream. This work aims to provide an overview of the most recently proposed approaches for selecting the most informative observations from data streams in the context of online active learning. We review the various techniques that have been proposed and discuss their strengths and limitations, as well as the challenges and opportunities that exist in this area of research. Our review aims to provide a comprehensive and up-to-date overview of the field and to highlight directions for future work

    Cold-Start Collaborative Filtering

    Get PDF
    Collaborative Filtering (CF) is a technique to generate personalised recommendations for a user from a collection of correlated preferences in the past. In general, the effectiveness of CF greatly depends on the amount of available information about the target user and the target item. The cold-start problem, which describes the difficulty of making recommendations when the users or the items are new, remains a great challenge for CF. Traditionally, this problem is tackled by resorting to an additional interview process to establish the user (item) profile before making any recommendations. During this process the user’s information need is not addressed. In this thesis, however, we argue that recommendations would be preferably provided right from the beginning. And the goal of solving the cold-start problem should be maximising the overall recommendation utility during all interactions with the recommender system. In other words, we should not distinguish between the information-gathering and recommendation-making phases, but seamlessly integrate them together. This mechanism naturally addresses the cold-start problem as any user (item) can immediately receive sequential recommendations without providing extra information beforehand. This thesis solves the cold-start problem in an interactive setting by focusing on four interconnected aspects. First, we consider a continuous sequential recommendation process with CF and relate it to the exploitation-exploration (EE) trade-off. By employing probabilistic matrix factorization, we obtain a structured decision space and are thus able to leverage several EE algorithms, such as Thompson sampling and upper confidence bounds, to select items. Second, we extend the sequential recommendation process to a batch mode where multiple recommendations are made at each interaction stage. We specifically discuss the case of two consecutive interaction stages, and model it with the partially observable Markov decision process (POMDP) to obtain its exact theoretical solution. Through an in-depth analysis of the POMDP value iteration solution, we identify that an exact solution can be abstracted as selecting users (items) that are not only highly relevant to the target according to the initial-stage information, but also highly correlated with other potential users (items) for the next stage. Third, we consider the intra-stage recommendation optimisation and focus on the problem of personalised item diversification. We reformulate the latent factor models using the mean-variance analysis from the portfolio theory in economics. The resulting portfolio ranking algorithm naturally captures the user’s interest range and the uncertainty of the user preference by employing the variance of the learned user latent factors, leading to a diversified item list adapted to the individual user. And, finally, we relate the diversification algorithm back to the interactive process by considering inter-stage joint portfolio diversification, where the recommendations are optimised jointly with the user’s past preference records

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    Sequential Decision Making with Strategic Agents and Limited Feedback

    Get PDF
    Sequential decision-making is a natural model for machine learning applications where the learner must make online decisions in real time and simultaneously learn from the sequential data to make better decisions in the future. Classical work has focused on variants of the problem based on the data distribution being either stochastic or adversarial, or based on the feedback available to the learner’s decisions which could be either partial or complete. With the rapid rise of large online markets, sequential learning methods have increasingly been deployed in complex multi-agent systems where agents may behave strategically to optimize for their own personal objectives. This has added a new dimension to the sequential decision-making problem where the learner must account for the strategic behavior of the agents it is learning from who might want to steer its future decisions in their favor. This thesis aims to design effective online decision-making algorithms from the point of view of the system designers aiming to learn in environments with strategic agents and limited feedback and the strategic agents seeking to optimize personal objectives. In the first part of the thesis, we focus on repeated auctions and design mechanisms where the auctioneer can effectively learn in the presence of strategic bidders, and conversely, address how agents can bid in repeated auctions or use data-poisoning attacks to maximize their own objectives. In the second part, we consider an online learning setting where feedback about the learner’s decisions is expensive to obtain. We introduce an online learning algorithm inspired by techniques from active learning that can fast forward a small fraction of more informative examples ahead in the queue. This allows the learner to obtain the same performance as the optimal online algorithm but only by querying feedback on a very small fraction of points. Finally, in the third part of the thesis, we consider a new learning objective for stochastic multi-arm bandits that promotes merit-based fairness in opportunity for individuals and groups.Ph.D

    The Journal of ERW and Mine Action Issue 10.1 (2006)

    Get PDF
    Feature: Explosive Remnants of War | Focus: Africa | Profiles | Making it Personal | Notes from the Field | Research and Developmen

    Using contextual information to understand searching and browsing behavior

    Get PDF
    There is great imbalance in the richness of information on the web and the succinctness and poverty of search requests of web users, making their queries only a partial description of the underlying complex information needs. Finding ways to better leverage contextual information and make search context-aware holds the promise to dramatically improve the search experience of users. We conducted a series of studies to discover, model and utilize contextual information in order to understand and improve users' searching and browsing behavior on the web. Our results capture important aspects of context under the realistic conditions of different online search services, aiming to ensure that our scientific insights and solutions transfer to the operational settings of real world applications

    A submodular optimization framework for never-ending learning : semi-supervised, online, and active learning.

    Get PDF
    The revolution in information technology and the explosion in the use of computing devices in people\u27s everyday activities has forever changed the perspective of the data mining and machine learning fields. The enormous amounts of easily accessible, information rich data is pushing the data analysis community in general towards a shift of paradigm. In the new paradigm, data comes in the form a stream of billions of records received everyday. The dynamic nature of the data and its sheer size makes it impossible to use the traditional notion of offline learning where the whole data is accessible at any time point. Moreover, no amount of human resources is enough to get expert feedback on the data. In this work we have developed a unified optimization based learning framework that approaches many of the challenges mentioned earlier. Specifically, we developed a Never-Ending Learning framework which combines incremental/online, semi-supervised, and active learning under a unified optimization framework. The established framework is based on the class of submodular optimization methods. At the core of this work we provide a novel formulation of the Semi-Supervised Support Vector Machines (S3VM) in terms of submodular set functions. The new formulation overcomes the non-convexity issues of the S3VM and provides a state of the art solution that is orders of magnitude faster than the cutting edge algorithms in the literature. Next, we provide a stream summarization technique via exemplar selection. This technique makes it possible to keep a fixed size exemplar representation of a data stream that can be used by any label propagation based semi-supervised learning technique. The compact data steam representation allows a wide range of algorithms to be extended to incremental/online learning scenario. Under the same optimization framework, we provide an active learning algorithm that constitute the feedback between the learning machine and an oracle. Finally, the developed Never-Ending Learning framework is essentially transductive in nature. Therefore, our last contribution is an inductive incremental learning technique for incremental training of SVM using the properties of local kernels. We demonstrated through this work the importance and wide applicability of the proposed methodologies

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested
    • …
    corecore