60 research outputs found

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Improving Residential Load Disaggregation for Sustainable Development of Energy via Principal Component Analysis

    Get PDF
    The useful planning and operation of the energy system requires a sustainability assessment of the system, in which the load model adopted is the most important factor in sustainability assessment. Having information about energy consumption patterns of the appliances allows consumers to manage their energy consumption efficiently. Non-intrusive load monitoring (NILM) is an effective tool to recognize power consumption patterns from the measured data in meters. In this paper, an unsupervised approach based on dimensionality reduction is applied to identify power consumption patterns of home electrical appliances. This approach can be utilized to classify household activities of daily life using data measured from home electrical smart meters. In the proposed method, the power consumption curves of the electrical appliances, as high-dimensional data, are mapped to a low-dimensional space by preserving the highest data variance via principal component analysis (PCA). In this paper, the reference energy disaggregation dataset (REDD) has been used to verify the proposed method. REDD is related to real-world measurements recorded at low-frequency. The presented results reveal the accuracy and efficiency of the proposed method in comparison to conventional procedures of NILM

    Thresholding methods in non-intrusive load monitoring

    Get PDF
    Non-intrusive load monitoring (NILM) is the problem of predicting the status or consumption of individual domestic appliances only from the knowledge of the aggregated power load. NILM is often formulated as a classifcation (ON/OFF) problem for each device. However, the training datasets gathered by smart meters do not contain these labels, but only the electric consumption at every time interval. This paper addresses a fundamental methodological problem in how a NILM problem is posed, namely how the diferent possible thresholding methods lead to diferent classifcation problems. Standard datasets and NILM deep learning models are used to illustrate how the choice of thresholding method afects the output results. Some criteria that should be considered for the choice of such methods are also proposed. Finally, we propose a slight modifcation to current deep learning models for multi-tasking, i.e. tackling the classifcation and regression problems simultaneously. Transfer learning between both problems might improve performance on each of them.Funding for open access publishing: Universidad de Cádiz/CBUA. This research has been financed in part by the Spanish Agencia Estatal de Investigación under grants PID2021-122154NB-I00 and TED2021-129455B-I00, and by a 2021 BBVA Foundation project for research in Mathematics. He also acknowledges support from the EU under the 2014-2020 ERDF Operational Programme and the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia (FEDER-UCA18-108393)

    Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction

    Get PDF
    Recently, a growing interest has been dedicated towards developing and implementing low-cost energy efficiency solutions in buildings. Accordingly, non-intrusive load monitoring has been investigated in various academic and industrial projects for capturing device-specific consumption footprints without any additional hardware installation. However, its performance should be improved further to enable an accurate appliance identification from the aggregated load. This paper presents an efficient non-intrusive load monitoring framework that consists of the following main components: (i) a novel fusion of multiple time-domain features is proposed to extract appliance fingerprints; (ii) a dimensionality reduction scheme is introduced to be applied to the fused time-domain features, which relies on fuzzy-neighbors preserving analysis based QR-decomposition. The latter can not only reduce feature dimensionality, but it can also effectively decrease the intra-class distances and increase the extra-class distances of appliance features; and (iii) a powerful decision bagging tree classifier is implemented to accurately classify electrical devices using the reduced features. Empirical evaluations performed on three real datasets, namely ACS-F2, REDD and WHITED collected at different sampling rates have shown a promising performance, according to the accuracy and F1 score achieved using the proposed non-intrusive load monitoring system. Reported accuracy and F1 score have reached both 100% for the WHITED dataset, 99.79% and 99.76% for the REDD dataset, and up to 99.41% and 98.93% for the ACS-f2 dataset, respectively. The outstanding performance achieved using the proposed solution determines its effectiveness in collecting individual-appliance consumption data and in promoting energy saving behaviors. 2020 The AuthorsThis paper was made possible by National Priorities Research Program (NPRP) grant No. 10-0130-170288 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. All authors approved the version of the manuscript to be published.Scopu

    Deep learning applications in non-intrusive load monitoring

    Get PDF
    Non-Intrusive Load Monitoring (NILM) is a technique for inferring the power consumption of each appliance within a home from one central meter, aiding in energy conservation. In this thesis I present several Deep Learning solutions for NILM, starting with two preliminary works – A proof of concept project for multisensory NILM on a Raspberry Pi; and a fully developed NILM solution named WaveNILM. Despite their success, both methods struggled to generalize outside their training data, a common problem in NILM. To improve generalization, I designed a framework for synthesizing truly novel appliance level power signatures based on generative adversarial networks (GAN) – the main project of this thesis. This generator, named PowerGAN, is trained using a variety of GAN techniques. I present a comparison of PowerGAN to other data synthesis work in the context of NILM and demonstrate that PowerGAN is able to create truly synthetic, realistic, diverse, appliance power signatures

    Non-intrusive load management system for residential loads using artificial neural network based arduino microcontroller

    Get PDF
    The energy monitoring is one of the most important aspects of energy management. In fact there is a need to monitor the power consumption of a building or premises before planning technical actions to minimize the energy consumption. In traditional load monitoring method, a sensor or a group of sensors attached to every load of interest to monitor the system, which makes the system costly and complex. On the other hand, by Non-Intrusive Load Monitoring (NILM) the aggregated measurement of the building’s appliances can be used to identify and/or disaggregate the connected appliances in the building. Therefore, the method provides a simple, reliable and cost effective monitoring since it uses only one set of measuring sensors at the service entry. This thesis aims at finding a solution in the residential electrical energy management through the development of Artificial Neural Network Arduino (ANN-Arduino) NILM system for monitoring and controlling the energy consumption of the home appliances. The major goal of this research work is the development of a simplified ANN-based non-intrusive residential appliances identifier. It is a real-time ANN-Arduino NILM system for residential energy management with its performance evaluation and the calibration of the ZMPT101B voltage sensor module for accurate measurement, by using polynomial regression method. Using the sensor algorithm obtained, an error of 0.9% in the root mean square (rms) measurement of the voltage is obtained using peak-peak measurement method, in comparison to 2.5% when using instantaneous measurement method. Secondly, a residential energy consumption measurement and control system is developed using Arduino microcontroller, which accurately control the home appliances within the threshold power consumption level. The energy consumption measurement prototype has an accurate power and current measurement with error of 3.88% in current measurement when compared with the standard Fluke meter. An ANN-Arduino NILM system is also developed using steady-state signatures, which uses the feedforward ANN to identify the loads when it received the aggregated real power, rms current and power factor from the Arduino. Finally, the ANN-Arduino NILM based appliances’ management and control system is developed for keeping track of the appliances and managing their energy usage. The system accurately recognizes all the load combinations and the load controlling works within 2% time error. The overall system resulted into a new home appliances’ energy management system based on ANN-Arduino NILM that can be applied into smart electricity system at a reduced cost, reduced complexity and non-intrusively

    Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree

    Get PDF
    open access articleProviding the user with appliance-level consumption data is the core of each energy efficiency system. To that end, non-intrusive load monitoring is employed for extracting appliance specific consumption data at a low cost without the need of installing separate submeters for each electrical device. In this context, we propose in this paper a novel non-intrusive appliance recognition system based on (i) detecting events in the aggregated power signal using a novel and powerful scheme, (ii) applying multiscale wavelet packet tree to collect comprehensive energy consumption features, and (iii) adopting an ensemble bagging tree classifier along with comparing its performance with various machine learning schemes. Moreover, to validate the proposed model, an empirical investigation is conducted on two real and public energy consumption datasets, namely, the GREEND and REDD, in which consumption readings are collected at low-frequencies. In addition, a comprehensive review of recent non-intrusive load monitoring approaches has been conducted and presented, in which their characteristics, performances and limitations are described. The proposed non-intrusive load monitoring system shows a high appliance recognition performance in terms of the accuracy, F1 score and low time complexity when it has been applied to different households from the GREEND and REDD repositories, in which every house includes various domestic appliances. Obtained results have described, e.g., that average accuracies of 97.01% and 96.36% have been reached on the GREEND and REDD datasets, respectively, which outperformed almost existing solutions considered in this framework

    Data fusion strategies for energy efficiency in buildings: Overview, challenges and novel orientations

    Full text link
    Recently, tremendous interest has been devoted to develop data fusion strategies for energy efficiency in buildings, where various kinds of information can be processed. However, applying the appropriate data fusion strategy to design an efficient energy efficiency system is not straightforward; it requires a priori knowledge of existing fusion strategies, their applications and their properties. To this regard, seeking to provide the energy research community with a better understanding of data fusion strategies in building energy saving systems, their principles, advantages, and potential applications, this paper proposes an extensive survey of existing data fusion mechanisms deployed to reduce excessive consumption and promote sustainability. We investigate their conceptualizations, advantages, challenges and drawbacks, as well as performing a taxonomy of existing data fusion strategies and other contributing factors. Following, a comprehensive comparison of the state-of-the-art data fusion based energy efficiency frameworks is conducted using various parameters, including data fusion level, data fusion techniques, behavioral change influencer, behavioral change incentive, recorded data, platform architecture, IoT technology and application scenario. Moreover, a novel method for electrical appliance identification is proposed based on the fusion of 2D local texture descriptors, where 1D power signals are transformed into 2D space and treated as images. The empirical evaluation, conducted on three real datasets, shows promising performance, in which up to 99.68% accuracy and 99.52% F1 score have been attained. In addition, various open research challenges and future orientations to improve data fusion based energy efficiency ecosystems are explored

    Optimal Home Energy Management System for Committed Power Exchange Considering Renewable Generations

    Get PDF
    This thesis addresses the complexity of SH operation and local renewable resources optimum sizing. The effect of different criteria and components of SH on the size of renewable resources and cost of electricity is investigated. Operation of SH with the optimum size of renewable resources is evaluated to study SH annual cost. The effectiveness of SH with committed exchange power functionality is studied for minimizing cost while responding to DR programs
    corecore