94 research outputs found

    Improving Nocturnal Fire Detection with the VIIRS Day-Night Band

    Get PDF
    As an important component in the Earth-atmosphere system, wildfires are a serious threat to life and property that—despite improving warning systems—have exacted greater costs in recent years. In addition, they impact global atmospheric chemistry by releasing potent trace gasses and aerosols. Using the Visible Infrared Imaging Radiometer Suite (VIIRS), this study investigates the adjustment of fire pixel selection criteria to include visible light signatures at night, creating the Firelight Detection Algorithm (FILDA). This allows for greatly improved detection of smaller and cooler fires from satellite observations. VIIRS scenes with coincident Advanced Spaceborne Thermal Emission and Reflection (ASTER) overpasses are examined after applying the operational VIIRS fire product algorithm and including a modified candidate fire pixel selection approach, which lowers the 4 μm brightness temperature threshold from 305 K but includes a minimum day-night band (DNB) radiance. FILDA is tested by applying it to scenes in different environments, including large forest fires like the Rim Fire in California and High Park fire in Colorado, in addition to gas flares. A large increase in the number of detected fire pixels is observed with small non-agricultural wildfires, as verified with the finer-resolution ASTER data (90 m). Quantitative use of the DNB to improve detection of these smaller fires could lead to reduced warning and response times as well as provide more accurate quantification of biomass burning emissions at night. Adviser: Jun Wan

    Aladdin\u27s Magic Lamp: Developing Methods for Calibration and Geolocation Accuracy Assessment of the DMSP OLS

    Get PDF
    Nighttime satellite imagery from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to observe nocturnal light emissions from sources including cities, wild fires, and gas flares. Data from the DMSP OLS is used in a wide range of studies including mapping urban areas, estimating informal economies, and estimating urban populations. Given the extensive and increasing list of applications a repeatable method for assessing geolocation accuracy, performing inter-calibration, and defining the minimum detectable brightness would be beneficial. An array of portable lights was designed and taken to multiple field sites known to have no other light sources. The lights were operated during nighttime overpasses by the DMSP OLS and observed in the imagery. A first estimate of the minimum detectable brightness is presented based on the field experiments conducted. An assessment of the geolocation accuracy was performed by measuring the distance between the GPS measured location of the lights and the observed location in the imagery. A systematic shift was observed and the mean distance was measured at 2.9km. A method for in situ radiance calibration of the DMSP OLS using a ground based light source as an active target is presented. The wattage of light used by the active target strongly correlates with the signal measured by the DMSP OLS. This approach can be used to enhance our ability to make inter-temporal and inter-satellite comparisons of DMSP OLS imagery. Exploring the possibility of establishing a permanent active target for the calibration of nocturnal imaging systems is recommended. The methods used to assess the minimum detectable brightness, assess the geolocation accuracy, and build inter-calibration models lay the ground work for assessing the energy expended on light emitted into the sky at night. An estimate of the total energy consumed to light the night sky globally is presented

    Research theme reports from April 1, 2019 - March 31, 2020

    Get PDF

    Application of DMSP/OLS nighttime light images : a meta-analysis and a systematic literature review

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing 6 (2014): 6844-6866, doi:10.3390/rs6086844.Since the release of the digital archives of Defense Meteorological Satellite Program Operational Line Scanner (DMSP/OLS) nighttime light data in 1992, a variety of datasets based on this database have been produced and applied to monitor and analyze human activities and natural phenomena. However, differences among these datasets and how they have been applied may potentially confuse researchers working with these data. In this paper, we review the ways in which data from DMSP/OLS nighttime light images have been applied over the past two decades, focusing on differences in data processing, research trends, and the methods used among the different application areas. Five main datasets extracted from this database have led to many studies in various research areas over the last 20 years, and each dataset has its own strengths and limitations. The number of publications based on this database and the diversity of authors and institutions involved have shown promising growth. In addition, researchers have accumulated vast experience retrieving data on the spatial and temporal dynamics of settlement, demographics, and socioeconomic parameters, which are “hotspot” applications in this field. Researchers continue to develop novel ways to extract more information from the DMSP/OLS database and apply the data to interdisciplinary research topics. We believe that DMSP/OLS nighttime light data will play an important role in monitoring and analyzing human activities and natural phenomena from space in the future, particularly over the long term. A transparent platform that encourages data sharing, communication, and discussion of extraction methods and synthesis activities will benefit researchers as well as public and political stakeholders.This work is supported by the 111 project “Hazard and Risk Science Base at Beijing Normal University” under Grant B08008 (Ministry of Education and State Administration of Foreign Experts Affairs, PRC), the State Key Laboratory of Earth Surface Processes and Resource Ecology of Beijing Normal University (No. 2013-RC-03), and the Fundamental Research Funds for the Central Universities (Grant No. 201413037)

    CIRA annual report FY 2017/2018

    Get PDF
    Reporting period April 1, 2017-March 31, 2018

    Remote sensing of night lights: a review and an outlook for the future

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordRemote sensing of night light emissions in the visible band offers a unique opportunity to directly observe human activity from space. This has allowed a host of applications including mapping urban areas, estimating population and GDP, monitoring disasters and conflicts. More recently, remotely sensed night lights data have found use in understanding the environmental impacts of light emissions (light pollution), including their impacts on human health. In this review, we outline the historical development of night-time optical sensors up to the current state of the art sensors, highlight various applications of night light data, discuss the special challenges associated with remote sensing of night lights with a focus on the limitations of current sensors, and provide an outlook for the future of remote sensing of night lights. While the paper mainly focuses on space borne remote sensing, ground based sensing of night-time brightness for studies on astronomical and ecological light pollution, as well as for calibration and validation of space borne data, are also discussed. Although the development of night light sensors lags behind day-time sensors, we demonstrate that the field is in a stage of rapid development. The worldwide transition to LED lights poses a particular challenge for remote sensing of night lights, and strongly highlights the need for a new generation of space borne night lights instruments. This work shows that future sensors are needed to monitor temporal changes during the night (for example from a geostationary platform or constellation of satellites), and to better understand the angular patterns of light emission (roughly analogous to the BRDF in daylight sensing). Perhaps most importantly, we make the case that higher spatial resolution and multispectral sensors covering the range from blue to NIR are needed to more effectively identify lighting technologies, map urban functions, and monitor energy use.European Union Horizon 2020Helmholtz AssociationNatural Environment Research Council (NERC)Chinese Academy of ScienceLeibniz AssociationIGB Leibniz Institut

    CIRA annual report FY 2016/2017

    Get PDF
    Reporting period April 1, 2016-March 31, 2017

    CIRA annual report FY 2013/2014

    Get PDF

    CIRA annual report FY 2014/2015

    Get PDF
    Reporting period July 1, 2014-March 31, 2015
    • …
    corecore