63 research outputs found

    Iterative methods improving newton's method by the decomposition method

    Get PDF
    AbstractIn this paper, we present a sequence of iterative methods improving Newton's method for solving nonlinear equations. The Adomian decomposition method is applied to an equivalent coupled system to construct the sequence of the methods whose order of convergence increases as it progresses. The orders of convergence are derived analytically, and then rederived by applying symbolic computation of Maple. Some numerical illustrations are given

    Adomian decomposition method, nonlinear equations and spectral solutions of burgers equation

    Get PDF
    Tese de doutoramento. Ciências da Engenharia. 2006. Faculdade de Engenharia. Universidade do Porto, Instituto Superior Técnico. Universidade Técnica de Lisbo

    Improved Newton-Raphson Methods for Solving Nonlinear Equations

    Get PDF
    In this paper, we mainly study the numerical algorithms for simple root of nonlinear equations based on Newton-Raphson method. Two modified Newton-Raphson methods for solving nonlinear equations are suggested. Both of the methods are free from second derivatives. Numerical examples are made to show the performance of the presented methods, and to compare with other ones. The numerical results illustrate that the proposed methods are more efficient and performs better than Newton-Raphson method

    Newton Homotopy Solution for Nonlinear Equations Using Maple14

    Get PDF
    Many numerical approaches have been suggested to solve nonlinear problems. Some of the methods utilize successive approximation procedure to ensure every step of computing will converge to the desired root and one of the most common problems is the improper initial values for the iterative methods. This study evaluates Palancz et.al’s. (2010) paper on solving nonlinear equations using linear homotopy method in Mathematica. In this paper, the Newton-homotopy method using start-system is implemented in Maple14, to solve several nonlinear problems. Comparisons of results obtained in terms of number of iterations and convergence rates show promising application of the Newton-homotopy method for nonlinear problems

    A New Three Step Iterative Method without Second Derivative for Solving Nonlinear Equations

    Get PDF
    In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples

    ITERATIVE METHOD FOR CONSTRUCTING ANALYTICAL SOLUTIONS TO THE HARRY-DYM INITIAL VALUE PROBLEM

    Get PDF
    In this paper, an analytical technique, namely the new iterative method (NIM), is applied to obtain an approximate analytical solution of the nonlinear Harry-Dym equation which is often used in the theory of solitons. The rapid convergence of the method results in qualitatively accurate solutions in relatively few iterations; this is obvious upon comparing the obtained analytical solutions with the exact solutions. Our results indicate that NIM is highly accurate and efficient, therefore can be considered a very useful and valuable method

    Choosing the optimal multi-point iterative method for the Colebrook flow friction equation

    Get PDF
    The Colebrook equation is implicitly given in respect to the unknown flow friction factor λ; λ=ζ(Re, ε∗, λ)which cannot be expressed explicitly in exact way without simplifications and use of approximate calculus. A common approach to solve it is through the Newton–Raphson iterative procedure or through the fixed-point iterative procedure. Both require in some cases, up to seven iterations. On the other hand, numerous more powerful iterative methods such as threeor two-point methods, etc. are available. The purpose is to choose optimal iterative method in order to solve the implicit Colebrook equation for flow friction accurately using the least possible number of iterations. The methods are thoroughly tested and those which require the least possible number of iterations to reach the accurate solution are identified. The most powerful three-point methods require, in the worst case, only two iterations to reach the final solution. The recommended representatives are Sharma–Guha–Gupta, Sharma–Sharma, Sharma–Arora, Džuni´c–Petkovi´c–Petkovi´c; Bi–Ren–Wu, Chun–Neta based on Kung–Traub, Neta, and the Jain method based on the Steffensen scheme. The recommended iterative methods can reach the final accurate solution with the least possible number of iterations. The approach is hybrid between the iterative procedure and one-step explicit approximations and can be used in engineering design for initial rough, but also for final fine calculations
    • …
    corecore