6,028 research outputs found

    Improving Neural Sequence Labelling Using Additional Linguistic Information

    Get PDF
    Sequence Labelling is the task of mapping sequential data from one domain to another domain. As we can interpret language as a sequence of words, sequence labelling is very common in the field of Natural Language Processing (NLP). In NLP, some fundamental sequence labelling tasks are Parts-of-Speech Tagging, Named Entity Recognition, Chunking, etc. Moreover, many NLP tasks can be modeled as sequence labelling or sequence to sequence labelling such as machine translation, information retrieval and question answering. An extensive amount of research has already been performed on sequence labelling. Most of the current high performing models are neural network models. These Deep Learning based models are outperforming traditional machine learning techniques by using abstract high dimensional feature representations of the input data. In this thesis, we propose a new neural sequence model which uses several additional types of linguistic information to improve the model performance. The convergence rate of the proposed model is significantly less than similar models. Moreover, our model obtains state of the art results on the benchmark datasets of POS, NER, and chunking

    TermEval 2020 : shared task on automatic term extraction using the Annotated Corpora for term Extraction Research (ACTER) dataset

    Get PDF
    The TermEval 2020 shared task provided a platform for researchers to work on automatic term extraction (ATE) with the same dataset: the Annotated Corpora for Term Extraction Research (ACTER). The dataset covers three languages (English, French, and Dutch) and four domains, of which the domain of heart failure was kept as a held-out test set on which final f1-scores were calculated. The aim was to provide a large, transparent, qualitatively annotated, and diverse dataset to the ATE research community, with the goal of promoting comparative research and thus identifying strengths and weaknesses of various state-of-the-art methodologies. The results show a lot of variation between different systems and illustrate how some methodologies reach higher precision or recall, how different systems extract different types of terms, how some are exceptionally good at finding rare terms, or are less impacted by term length. The current contribution offers an overview of the shared task with a comparative evaluation, which complements the individual papers by all participants

    Wronging a Right: Generating Better Errors to Improve Grammatical Error Detection

    Get PDF
    Grammatical error correction, like other machine learning tasks, greatly benefits from large quantities of high quality training data, which is typically expensive to produce. While writing a program to automatically generate realistic grammatical errors would be difficult, one could learn the distribution of naturallyoccurring errors and attempt to introduce them into other datasets. Initial work on inducing errors in this way using statistical machine translation has shown promise; we investigate cheaply constructing synthetic samples, given a small corpus of human-annotated data, using an off-the-rack attentive sequence-to-sequence model and a straight-forward post-processing procedure. Our approach yields error-filled artificial data that helps a vanilla bi-directional LSTM to outperform the previous state of the art at grammatical error detection, and a previously introduced model to gain further improvements of over 5% F0.5F_{0.5} score. When attempting to determine if a given sentence is synthetic, a human annotator at best achieves 39.39 F1F_1 score, indicating that our model generates mostly human-like instances.Comment: Accepted as a short paper at EMNLP 201

    Few-shot classification in Named Entity Recognition Task

    Full text link
    For many natural language processing (NLP) tasks the amount of annotated data is limited. This urges a need to apply semi-supervised learning techniques, such as transfer learning or meta-learning. In this work we tackle Named Entity Recognition (NER) task using Prototypical Network - a metric learning technique. It learns intermediate representations of words which cluster well into named entity classes. This property of the model allows classifying words with extremely limited number of training examples, and can potentially be used as a zero-shot learning method. By coupling this technique with transfer learning we achieve well-performing classifiers trained on only 20 instances of a target class.Comment: In proceedings of the 34th ACM/SIGAPP Symposium on Applied Computin
    corecore