43,313 research outputs found

    Improving Neural Machine Translation with Pre-trained Representation

    Full text link
    Monolingual data has been demonstrated to be helpful in improving the translation quality of neural machine translation (NMT). The current methods stay at the usage of word-level knowledge, such as generating synthetic parallel data or extracting information from word embedding. In contrast, the power of sentence-level contextual knowledge which is more complex and diverse, playing an important role in natural language generation, has not been fully exploited. In this paper, we propose a novel structure which could leverage monolingual data to acquire sentence-level contextual representations. Then, we design a framework for integrating both source and target sentence-level representations into NMT model to improve the translation quality. Experimental results on Chinese-English, German-English machine translation tasks show that our proposed model achieves improvement over strong Transformer baselines, while experiments on English-Turkish further demonstrate the effectiveness of our approach in the low-resource scenario.Comment: In Progres

    Visually Grounded Word Embeddings and Richer Visual Features for Improving Multimodal Neural Machine Translation

    Full text link
    In Multimodal Neural Machine Translation (MNMT), a neural model generates a translated sentence that describes an image, given the image itself and one source descriptions in English. This is considered as the multimodal image caption translation task. The images are processed with Convolutional Neural Network (CNN) to extract visual features exploitable by the translation model. So far, the CNNs used are pre-trained on object detection and localization task. We hypothesize that richer architecture, such as dense captioning models, may be more suitable for MNMT and could lead to improved translations. We extend this intuition to the word-embeddings, where we compute both linguistic and visual representation for our corpus vocabulary. We combine and compare different confiComment: Accepted to GLU 2017. arXiv admin note: text overlap with arXiv:1707.0099

    A Brief Survey of Multilingual Neural Machine Translation

    Full text link
    We present a survey on multilingual neural machine translation (MNMT), which has gained a lot of traction in the recent years. MNMT has been useful in improving translation quality as a result of knowledge transfer. MNMT is more promising and interesting than its statistical machine translation counterpart because end-to-end modeling and distributed representations open new avenues. Many approaches have been proposed in order to exploit multilingual parallel corpora for improving translation quality. However, the lack of a comprehensive survey makes it difficult to determine which approaches are promising and hence deserve further exploration. In this paper, we present an in-depth survey of existing literature on MNMT. We categorize various approaches based on the resource scenarios as well as underlying modeling principles. We hope this paper will serve as a starting point for researchers and engineers interested in MNMT.Comment: We have substantially expanded this paper for a journal submission to computing surveys [arXiv:2001.01115

    Bilingual-GAN: A Step Towards Parallel Text Generation

    Full text link
    Latent space based GAN methods and attention based sequence to sequence models have achieved impressive results in text generation and unsupervised machine translation respectively. Leveraging the two domains, we propose an adversarial latent space based model capable of generating parallel sentences in two languages concurrently and translating bidirectionally. The bilingual generation goal is achieved by sampling from the latent space that is shared between both languages. First two denoising autoencoders are trained, with shared encoders and back-translation to enforce a shared latent state between the two languages. The decoder is shared for the two translation directions. Next, a GAN is trained to generate synthetic "code" mimicking the languages' shared latent space. This code is then fed into the decoder to generate text in either language. We perform our experiments on Europarl and Multi30k datasets, on the English-French language pair, and document our performance using both supervised and unsupervised machine translation

    Machine Translation Evaluation with Neural Networks

    Full text link
    We present a framework for machine translation evaluation using neural networks in a pairwise setting, where the goal is to select the better translation from a pair of hypotheses, given the reference translation. In this framework, lexical, syntactic and semantic information from the reference and the two hypotheses is embedded into compact distributed vector representations, and fed into a multi-layer neural network that models nonlinear interactions between each of the hypotheses and the reference, as well as between the two hypotheses. We experiment with the benchmark datasets from the WMT Metrics shared task, on which we obtain the best results published so far, with the basic network configuration. We also perform a series of experiments to analyze and understand the contribution of the different components of the network. We evaluate variants and extensions, including fine-tuning of the semantic embeddings, and sentence-based representations modeled with convolutional and recurrent neural networks. In summary, the proposed framework is flexible and generalizable, allows for efficient learning and scoring, and provides an MT evaluation metric that correlates with human judgments, and is on par with the state of the art.Comment: Machine Translation, Reference-based MT Evaluation, Deep Neural Networks, Distributed Representation of Texts, Textual Similarit

    Learning to Represent Words in Context with Multilingual Supervision

    Full text link
    We present a neural network architecture based on bidirectional LSTMs to compute representations of words in the sentential contexts. These context-sensitive word representations are suitable for, e.g., distinguishing different word senses and other context-modulated variations in meaning. To learn the parameters of our model, we use cross-lingual supervision, hypothesizing that a good representation of a word in context will be one that is sufficient for selecting the correct translation into a second language. We evaluate the quality of our representations as features in three downstream tasks: prediction of semantic supersenses (which assign nouns and verbs into a few dozen semantic classes), low resource machine translation, and a lexical substitution task, and obtain state-of-the-art results on all of these

    Distilling Knowledge Learned in BERT for Text Generation

    Full text link
    Large-scale pre-trained language model such as BERT has achieved great success in language understanding tasks. However, it remains an open question how to utilize BERT for language generation. In this paper, we present a novel approach, Conditional Masked Language Modeling (C-MLM), to enable the finetuning of BERT on target generation tasks. The finetuned BERT (teacher) is exploited as extra supervision to improve conventional Seq2Seq models (student) for better text generation performance. By leveraging BERT's idiosyncratic bidirectional nature, distilling knowledge learned in BERT can encourage auto-regressive Seq2Seq models to plan ahead, imposing global sequence-level supervision for coherent text generation. Experiments show that the proposed approach significantly outperforms strong Transformer baselines on multiple language generation tasks such as machine translation and text summarization. Our proposed model also achieves new state of the art on IWSLT German-English and English-Vietnamese MT datasets. Code is available at https://github.com/ChenRocks/Distill-BERT-Textgen.Comment: ACL 202

    Improving Multilingual Semantic Textual Similarity with Shared Sentence Encoder for Low-resource Languages

    Full text link
    Measuring the semantic similarity between two sentences (or Semantic Textual Similarity - STS) is fundamental in many NLP applications. Despite the remarkable results in supervised settings with adequate labeling, little attention has been paid to this task in low-resource languages with insufficient labeling. Existing approaches mostly leverage machine translation techniques to translate sentences into rich-resource language. These approaches either beget language biases, or be impractical in industrial applications where spoken language scenario is more often and rigorous efficiency is required. In this work, we propose a multilingual framework to tackle the STS task in a low-resource language e.g. Spanish, Arabic , Indonesian and Thai, by utilizing the rich annotation data in a rich resource language, e.g. English. Our approach is extended from a basic monolingual STS framework to a shared multilingual encoder pretrained with translation task to incorporate rich-resource language data. By exploiting the nature of a shared multilingual encoder, one sentence can have multiple representations for different target translation language, which are used in an ensemble model to improve similarity evaluation. We demonstrate the superiority of our method over other state of the art approaches on SemEval STS task by its significant improvement on non-MT method, as well as an online industrial product where MT method fails to beat baseline while our approach still has consistently improvements

    Evaluating Layers of Representation in Neural Machine Translation on Part-of-Speech and Semantic Tagging Tasks

    Full text link
    While neural machine translation (NMT) models provide improved translation quality in an elegant, end-to-end framework, it is less clear what they learn about language. Recent work has started evaluating the quality of vector representations learned by NMT models on morphological and syntactic tasks. In this paper, we investigate the representations learned at different layers of NMT encoders. We train NMT systems on parallel data and use the trained models to extract features for training a classifier on two tasks: part-of-speech and semantic tagging. We then measure the performance of the classifier as a proxy to the quality of the original NMT model for the given task. Our quantitative analysis yields interesting insights regarding representation learning in NMT models. For instance, we find that higher layers are better at learning semantics while lower layers tend to be better for part-of-speech tagging. We also observe little effect of the target language on source-side representations, especially with higher quality NMT models.Comment: IJCNLP 201

    Learning to Remember Translation History with a Continuous Cache

    Full text link
    Existing neural machine translation (NMT) models generally translate sentences in isolation, missing the opportunity to take advantage of document-level information. In this work, we propose to augment NMT models with a very light-weight cache-like memory network, which stores recent hidden representations as translation history. The probability distribution over generated words is updated online depending on the translation history retrieved from the memory, endowing NMT models with the capability to dynamically adapt over time. Experiments on multiple domains with different topics and styles show the effectiveness of the proposed approach with negligible impact on the computational cost.Comment: Accepted by TACL 201
    • …
    corecore