115,590 research outputs found

    Improving Network Robustness against Adversarial Attacks with Compact Convolution

    Full text link
    Though Convolutional Neural Networks (CNNs) have surpassed human-level performance on tasks such as object classification and face verification, they can easily be fooled by adversarial attacks. These attacks add a small perturbation to the input image that causes the network to misclassify the sample. In this paper, we focus on neutralizing adversarial attacks by compact feature learning. In particular, we show that learning features in a closed and bounded space improves the robustness of the network. We explore the effect of L2-Softmax Loss, that enforces compactness in the learned features, thus resulting in enhanced robustness to adversarial perturbations. Additionally, we propose compact convolution, a novel method of convolution that when incorporated in conventional CNNs improves their robustness. Compact convolution ensures feature compactness at every layer such that they are bounded and close to each other. Extensive experiments show that Compact Convolutional Networks (CCNs) neutralize multiple types of attacks, and perform better than existing methods in defending adversarial attacks, without incurring any additional training overhead compared to CNNs

    Evaluating and Improving Adversarial Robustness of Machine Learning-Based Network Intrusion Detectors

    Full text link
    Machine learning (ML), especially deep learning (DL) techniques have been increasingly used in anomaly-based network intrusion detection systems (NIDS). However, ML/DL has shown to be extremely vulnerable to adversarial attacks, especially in such security-sensitive systems. Many adversarial attacks have been proposed to evaluate the robustness of ML-based NIDSs. Unfortunately, existing attacks mostly focused on feature-space and/or white-box attacks, which make impractical assumptions in real-world scenarios, leaving the study on practical gray/black-box attacks largely unexplored. To bridge this gap, we conduct the first systematic study of the gray/black-box traffic-space adversarial attacks to evaluate the robustness of ML-based NIDSs. Our work outperforms previous ones in the following aspects: (i) practical-the proposed attack can automatically mutate original traffic with extremely limited knowledge and affordable overhead while preserving its functionality; (ii) generic-the proposed attack is effective for evaluating the robustness of various NIDSs using diverse ML/DL models and non-payload-based features; (iii) explainable-we propose an explanation method for the fragile robustness of ML-based NIDSs. Based on this, we also propose a defense scheme against adversarial attacks to improve system robustness. We extensively evaluate the robustness of various NIDSs using diverse feature sets and ML/DL models. Experimental results show our attack is effective (e.g., >97% evasion rate in half cases for Kitsune, a state-of-the-art NIDS) with affordable execution cost and the proposed defense method can effectively mitigate such attacks (evasion rate is reduced by >50% in most cases).Comment: This article has been accepted for publication by IEEE JSA

    Characterizing and Predicting the Robustness of Power-law Networks

    Full text link
    Power-law networks such as the Internet, terrorist cells, species relationships, and cellular metabolic interactions are susceptible to node failures, yet maintaining network connectivity is essential for network functionality. Disconnection of the network leads to fragmentation and, in some cases, collapse of the underlying system. However, the influences of the topology of networks on their ability to withstand node failures are poorly understood. Based on a study of the response of 2,000 power-law networks to node failures, we find that networks with higher nodal degree and clustering coefficient, lower betweenness centrality, and lower variability in path length and clustering coefficient maintain their cohesion better during such events. We also find that network robustness, i.e., the ability to withstand node failures, can be accurately predicted a priori for power-law networks across many fields. These results provide a basis for designing new, more robust networks, improving the robustness of existing networks such as the Internet and cellular metabolic pathways, and efficiently degrading networks such as terrorist cells

    Achieving Adversarial Robustness via Sparsity

    Full text link
    Network pruning has been known to produce compact models without much accuracy degradation. However, how the pruning process affects a network's robustness and the working mechanism behind remain unresolved. In this work, we theoretically prove that the sparsity of network weights is closely associated with model robustness. Through experiments on a variety of adversarial pruning methods, we find that weights sparsity will not hurt but improve robustness, where both weights inheritance from the lottery ticket and adversarial training improve model robustness in network pruning. Based on these findings, we propose a novel adversarial training method called inverse weights inheritance, which imposes sparse weights distribution on a large network by inheriting weights from a small network, thereby improving the robustness of the large network

    Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability

    Full text link
    We explore the concept of co-design in the context of neural network verification. Specifically, we aim to train deep neural networks that not only are robust to adversarial perturbations but also whose robustness can be verified more easily. To this end, we identify two properties of network models - weight sparsity and so-called ReLU stability - that turn out to significantly impact the complexity of the corresponding verification task. We demonstrate that improving weight sparsity alone already enables us to turn computationally intractable verification problems into tractable ones. Then, improving ReLU stability leads to an additional 4-13x speedup in verification times. An important feature of our methodology is its "universality," in the sense that it can be used with a broad range of training procedures and verification approaches

    Distributed Radio Interferometric Calibration

    Full text link
    Increasing data volumes delivered by a new generation of radio interferometers require computationally efficient and robust calibration algorithms. In this paper, we propose distributed calibration as a way of improving both computational cost as well as robustness in calibration. We exploit the data parallelism across frequency that is inherent in radio astronomical observations that are recorded as multiple channels at different frequencies. Moreover, we also exploit the smoothness of the variation of calibration parameters across frequency. Data parallelism enables us to distribute the computing load across a network of compute agents. Smoothness in frequency enables us reformulate calibration as a consensus optimization problem. With this formulation, we enable flow of information between compute agents calibrating data at different frequencies, without actually passing the data, and thereby improving robustness. We present simulation results to show the feasibility as well as the advantages of distributed calibration as opposed to conventional calibration.Comment: MNRAS Accepted 2015 March 13. Received 2015 January 28; in original form 2014 November 6, low resolution figure

    Light-weight Head Pose Invariant Gaze Tracking

    Full text link
    Unconstrained remote gaze tracking using off-the-shelf cameras is a challenging problem. Recently, promising algorithms for appearance-based gaze estimation using convolutional neural networks (CNN) have been proposed. Improving their robustness to various confounding factors including variable head pose, subject identity, illumination and image quality remain open problems. In this work, we study the effect of variable head pose on machine learning regressors trained to estimate gaze direction. We propose a novel branched CNN architecture that improves the robustness of gaze classifiers to variable head pose, without increasing computational cost. We also present various procedures to effectively train our gaze network including transfer learning from the more closely related task of object viewpoint estimation and from a large high-fidelity synthetic gaze dataset, which enable our ten times faster gaze network to achieve competitive accuracy to its current state-of-the-art direct competitor.Comment: 9 pages, IEEE Conference on Computer Vision and Pattern Recognition Worksho

    Adversarial Collaborative Auto-encoder for Top-N Recommendation

    Full text link
    During the past decade, model-based recommendation methods have evolved from latent factor models to neural network-based models. Most of these techniques mainly focus on improving the overall performance, such as the root mean square error for rating predictions and hit ratio for top-N recommendation, where the users' feedback is considered as the ground-truth. However, in real-world applications, the users' feedback is possibly contaminated by imperfect user behaviours, namely, careless preference selection. Such data contamination poses challenges on the design of robust recommendation methods. In this work, to address the above issue, we propose a general adversial training framework for neural network-based recommendation models, which improves both the model robustness and the overall performance. We point out the tradeoffs between performance and robustness enhancement with detailed instructions on how to strike a balance. Specifically, we implement our approach on the collaborative auto-encoder, followed by experiments on three public available datasets: MovieLens-1M, Ciao, and FilmTrust. We show that our approach outperforms highly competitive state-of-the-art recommendation methods. In addition, we carry out a thorough analysis on the noise impacts, as well as the complex interactions between model nonlinearity and noise levels. Through simple modifications, our adversarial training framework can be applied to a host of neural network-based models whose robustness and performance are expected to be both enhanced

    Improving Robustness of Neural Dialog Systems in a Data-Efficient Way with Turn Dropout

    Full text link
    Neural network-based dialog models often lack robustness to anomalous, out-of-domain (OOD) user input which leads to unexpected dialog behavior and thus considerably limits such models' usage in mission-critical production environments. The problem is especially relevant in the setting of dialog system bootstrapping with limited training data and no access to OOD examples. In this paper, we explore the problem of robustness of such systems to anomalous input and the associated to it trade-off in accuracies on seen and unseen data. We present a new dataset for studying the robustness of dialog systems to OOD input, which is bAbI Dialog Task 6 augmented with OOD content in a controlled way. We then present turn dropout, a simple yet efficient negative sampling-based technique for improving robustness of neural dialog models. We demonstrate its effectiveness applied to Hybrid Code Network-family models (HCNs) which reach state-of-the-art results on our OOD-augmented dataset as well as the original one. Specifically, an HCN trained with turn dropout achieves state-of-the-art performance of more than 75% per-utterance accuracy on the augmented dataset's OOD turns and 74% F1-score as an OOD detector. Furthermore, we introduce a Variational HCN enhanced with turn dropout which achieves more than 56.5% accuracy on the original bAbI Task 6 dataset, thus outperforming the initially reported HCN's result.Comment: NeurIPS 2018 workshop on Conversational A
    • …
    corecore