5,508 research outputs found

    Improving multiclass pattern recognition by the combination of two strategies

    Get PDF
    We present a new method of multiclass classification based on the combination of one- vs- all method and a modification of one- vs- one method. This combination of one- vs- all and one- vs- one methods proposed enforces the strength of both methods. A study of the behavior of the two methods identifies some of the sources of their failure. The performance of a classifier can be improved if the two methods are combined in one, in such a way that the main sources of their failure are partially avoided

    One-Class-at-a-Time Removal Sequence Planning Method for Multiclass Classification Problems

    Get PDF
    Using dynamic programming, this work develops a one-class-at-a-time removal sequence planning method to decompose a multiclass classification problem into a series of two-class problems. Compared with previous decomposition methods, the approach has the following distinct features. First, under the one-class-at-a-time framework, the approach guarantees the optimality of the decomposition. Second, for a K-class problem, the number of binary classifiers required by the method is only K-1. Third, to achieve higher classification accuracy, the approach can easily be adapted to form a committee machine. A drawback of the approach is that its computational burden increases rapidly with the number of classes. To resolve this difficulty, a partial decomposition technique is introduced that reduces the computational cost by generating a suboptimal solution. Experimental results demonstrate that the proposed approach consistently outperforms two conventional decomposition methods

    Totally Corrective Multiclass Boosting with Binary Weak Learners

    Full text link
    In this work, we propose a new optimization framework for multiclass boosting learning. In the literature, AdaBoost.MO and AdaBoost.ECC are the two successful multiclass boosting algorithms, which can use binary weak learners. We explicitly derive these two algorithms' Lagrange dual problems based on their regularized loss functions. We show that the Lagrange dual formulations enable us to design totally-corrective multiclass algorithms by using the primal-dual optimization technique. Experiments on benchmark data sets suggest that our multiclass boosting can achieve a comparable generalization capability with state-of-the-art, but the convergence speed is much faster than stage-wise gradient descent boosting. In other words, the new totally corrective algorithms can maximize the margin more aggressively.Comment: 11 page

    Is Deep Learning Safe for Robot Vision? Adversarial Examples against the iCub Humanoid

    Full text link
    Deep neural networks have been widely adopted in recent years, exhibiting impressive performances in several application domains. It has however been shown that they can be fooled by adversarial examples, i.e., images altered by a barely-perceivable adversarial noise, carefully crafted to mislead classification. In this work, we aim to evaluate the extent to which robot-vision systems embodying deep-learning algorithms are vulnerable to adversarial examples, and propose a computationally efficient countermeasure to mitigate this threat, based on rejecting classification of anomalous inputs. We then provide a clearer understanding of the safety properties of deep networks through an intuitive empirical analysis, showing that the mapping learned by such networks essentially violates the smoothness assumption of learning algorithms. We finally discuss the main limitations of this work, including the creation of real-world adversarial examples, and sketch promising research directions.Comment: Accepted for publication at the ICCV 2017 Workshop on Vision in Practice on Autonomous Robots (ViPAR
    corecore