12 research outputs found

    КаскадноС ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π° основС ΠΌΠ½ΠΎΠ³ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΠΊ ΠΈ ΠΊΠΎΠ΄ΠΎΠ² Π ΠΈΠ΄Π° β€” Π‘ΠΎΠ»ΠΎΠΌΠΎΠ½Π° для ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠΉ Ρ„Π»ΡΡˆ-памяти

    Get PDF
    The article considers concatenated coding scheme for multilevel flash memory. In this scheme the inner stage is a finite subset of a multidimensional lattice (lattice code) and the outer stage uses Reed–Solomon code. Performance analysis is done for a model characterizing the basic physical features of a flash memory cell with non-uniform target voltage levels and noise variance dependent on the recorded value (input-dependent additive Gaussian noise, ID-AGN). For this model we develop a new approach to evaluating the error probability for the inner code. This approach is based on one-dimensional numerical integration of product of the characteristic functions of random variables used in the decoding process. It is shown how the parameters of the concatenated coding scheme can be adapted to keep the required error probability when the retention period and/or number of program-erasure cycles increase.Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСна каскадная схСма кодирования для ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠΉ Ρ„Π»ΡΡˆ-памяти, внутрСнняя ΡΡ‚ΡƒΠΏΠ΅Π½ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ прСдставляСт собой ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ΅ подмноТСство ΠΌΠ½ΠΎΠ³ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ цСлочислСнной Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠΈ (lattice code), Π° Π² качСствС внСшнСй ступСни ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΊΠΎΠ΄ Π ΠΈΠ΄Π° β€” Π‘ΠΎΠ»ΠΎΠΌΠΎΠ½Π°. Анализ помСхоустойчивости ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ каскадной схСмы Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅ΠΉ основныС физичСскиС особСнности ячСйки Ρ„Π»ΡΡˆ-памяти с Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ располоТСнными Ρ†Π΅Π»Π΅Π²Ρ‹ΠΌΠΈ уровнями напряТСния Π² ячСйкС ΠΈ диспСрсиСй ΡˆΡƒΠΌΠ°, зависящСй ΠΎΡ‚ записанного значСния (input-dependent additive Gaussian noise, ID-AGN). Для этой ΠΌΠΎΠ΄Π΅Π»ΠΈ Π² Ρ€Π°Π±ΠΎΡ‚Π΅ Ρ€Π°Π·Π²ΠΈΡ‚ Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Π²Ρ‹Ρ‡ΠΈΡΠ»Π΅Π½ΠΈΡŽ вСроятности ошибки дСкодирования Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ ΠΊΠΎΠ΄Π° Π½Π° основС ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ числСнного интСгрирования ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ характСристичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ случайных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Π΄Π΅ΠΊΠΎΠ΄Π΅Ρ€ΠΎΠΌ ΠΏΡ€ΠΈ вынСсСнии Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Показано, ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ хранСния ΠΈ/ΠΈΠ»ΠΈ числа Ρ†ΠΈΠΊΠ»ΠΎΠ² пСрСзаписи Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ каскадной конструкции с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠΎΡ…Ρ€Π°Π½ΠΈΡ‚ΡŒ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹ΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ вСроятности ошибки

    Анализ эффСктивности каскадного кодирования для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ выносливости ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠΉ NAND Ρ„Π»Π΅Ρˆ-памяти

    Get PDF
    The increasing storage density of modern NAND flash memory chips, achieved both due to scaling down the cell size, and due to the increasing number of used cell states, leads to a decrease in data storage reliability, namely, error probability, endurance (number of P/E cycling) and retention time. Error correction codes are often used to improve the reliability of data storage in multilevel flash memory. The effectiveness of using error correction codes is largely determined by the model accuracy that exhibits the basic processes associated with writing and reading data. The paper describes the main sources of disturbances for a flash cell that affect the threshold voltage of the cell in NAND flash memory, and represents an explicit form of the threshold voltage distribution. As an approximation of the obtained threshold voltage distribution, a Normal-Laplace mixture model was shown to be a good fit in multilevel flash memories for a large number of rewriting cycles. For this model, a performance analysis of the concatenated coding scheme with an outer Reed-Solomon code and an inner multilevel code consisting of binary component codes is carried out. The performed analysis makes it possible to obtain tradeoffs between the error probability, storage density, and the number of P/E cycling. The resulting tradeoffs show that the considered concatenated coding schemes allow, due to a very slight decrease in the storage density, to increase the number of P/E cycling up to 2–2.5 times than their nominal endurance specification while maintaining the required value of the bit error probability.ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ плотности записи Π² соврСмСнных Ρ‡ΠΈΠΏΠ°Ρ… NAND Ρ„Π»Π΅Ρˆ-памяти, достигаСмоС ΠΊΠ°ΠΊ Π·Π° счСт ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‰Π΅Π³ΠΎΡΡ физичСского Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ячСйки, Ρ‚Π°ΠΊ ΠΈ благодаря Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰Π΅ΠΌΡƒ количСству ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… состояний ячСйки, сопровоТдаСтся сниТСниСм надСТности хранСния Π΄Π°Π½Π½Ρ‹Ρ… – вСроятности ошибки, выносливости (числа Ρ†ΠΈΠΊΠ»ΠΎΠ² пСрСзаписи) ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ хранСния. Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½Ρ‹ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΌ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ хранСния Π΄Π°Π½Π½Ρ‹Ρ… Π² ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠΉ Ρ„Π»Π΅Ρˆ-памяти, являСтся Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ помСхоустойчивого кодирования. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ввСдСния помСхоустойчивого кодирования Π² сущСствСнной стСпСни опрСдСляСтся Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΌΠΎΠ΄Π΅Π»ΠΈ, Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΡƒΡŽΡ‰Π΅ΠΉ основныС процСссы, связанныС с записью ΠΈ Ρ‡Ρ‚Π΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½Ρ‹Ρ…. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ приводится описаниС основных искаТСний, ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰ΠΈΡ… процСсс записи/считывания Π² NAND Ρ„Π»Π΅Ρˆ-памяти, ΠΈ явный Π²ΠΈΠ΄ плотностСй распрСдСлСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΡˆΡƒΠΌΠ°. Π’ качСствС аппроксимации ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… плотностСй распрСдСлСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΡˆΡƒΠΌΠ° рассматриваСтся модСль Π½Π° основС ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ гауссова распрСдСлСния ΠΈ распрСдСлСния Лапласа, достаточно Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π°Ρ плотности распрСдСлСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΡˆΡƒΠΌΠ° ΠΏΡ€ΠΈ большом числС Ρ†ΠΈΠΊΠ»ΠΎΠ² пСрСзаписи. Для этой ΠΌΠΎΠ΄Π΅Π»ΠΈ проводится Π°Π½Π°Π»ΠΈΠ· помСхоустойчивости каскадных ΠΊΠΎΠ΄ΠΎΠ²Ρ‹Ρ… конструкций с внСшним ΠΊΠΎΠ΄ΠΎΠΌ Π ΠΈΠ΄Π°-Π‘ΠΎΠ»ΠΎΠΌΠΎΠ½Π° ΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²Ρ‹ΠΌ ΠΊΠΎΠ΄ΠΎΠΌ, состоящим ΠΈΠ· Π΄Π²ΠΎΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ². Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΠ±ΠΌΠ΅Π½Π½Ρ‹Π΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ ошибки, ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ записи ΠΈ числом Ρ†ΠΈΠΊΠ»ΠΎΠ² пСрСзаписи. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΎΠ±ΠΌΠ΅Π½Π½Ρ‹Π΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Π΅ конструкции ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π·Π° счСт ΠΎΡ‡Π΅Π½ΡŒ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сниТСния плотности записи ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π³Ρ€Π°Π½ΠΈΡ‡Π½ΠΎΠ³ΠΎ значСния числа Ρ†ΠΈΠΊΠ»ΠΎΠ² пСрСзаписи (опрСдСляСмого ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΌ) Π² 2–2.5 Ρ€Π°Π·Π° ΠΏΡ€ΠΈ сохранСнии Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠ³ΠΎ значСния вСроятности ошибки Π½Π° Π±ΠΈΡ‚

    Анализ эффСктивности каскадного кодирования для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ выносливости ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠΉ NAND Ρ„Π»Π΅Ρˆ-памяти

    Get PDF
    ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ плотности записи Π² соврСмСнных Ρ‡ΠΈΠΏΠ°Ρ… NAND Ρ„Π»Π΅Ρˆ-памяти, достигаСмоС ΠΊΠ°ΠΊ Π·Π° счСт ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‰Π΅Π³ΠΎΡΡ физичСского Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ячСйки, Ρ‚Π°ΠΊ ΠΈ благодаря Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰Π΅ΠΌΡƒ количСству ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… состояний ячСйки, сопровоТдаСтся сниТСниСм надСТности хранСния Π΄Π°Π½Π½Ρ‹Ρ… – вСроятности ошибки, выносливости (числа Ρ†ΠΈΠΊΠ»ΠΎΠ² пСрСзаписи) ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ хранСния. Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½Ρ‹ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΌ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ хранСния Π΄Π°Π½Π½Ρ‹Ρ… Π² ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠΉ Ρ„Π»Π΅Ρˆ-памяти, являСтся Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ помСхоустойчивого кодирования. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ввСдСния помСхоустойчивого кодирования Π² сущСствСнной стСпСни опрСдСляСтся Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΌΠΎΠ΄Π΅Π»ΠΈ, Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΡƒΡŽΡ‰Π΅ΠΉ основныС процСссы, связанныС с записью ΠΈ Ρ‡Ρ‚Π΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½Ρ‹Ρ…. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ приводится описаниС основных искаТСний, ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰ΠΈΡ… процСсс записи/считывания Π² NAND Ρ„Π»Π΅Ρˆ-памяти, ΠΈ явный Π²ΠΈΠ΄ плотностСй распрСдСлСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΡˆΡƒΠΌΠ°. Π’ качСствС аппроксимации ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… плотностСй распрСдСлСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΡˆΡƒΠΌΠ° рассматриваСтся модСль Π½Π° основС ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ гауссова распрСдСлСния ΠΈ распрСдСлСния Лапласа, достаточно Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π°Ρ плотности распрСдСлСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΡˆΡƒΠΌΠ° ΠΏΡ€ΠΈ большом числС Ρ†ΠΈΠΊΠ»ΠΎΠ² пСрСзаписи. Для этой ΠΌΠΎΠ΄Π΅Π»ΠΈ проводится Π°Π½Π°Π»ΠΈΠ· помСхоустойчивости каскадных ΠΊΠΎΠ΄ΠΎΠ²Ρ‹Ρ… конструкций с внСшним ΠΊΠΎΠ΄ΠΎΠΌ Π ΠΈΠ΄Π°-Π‘ΠΎΠ»ΠΎΠΌΠΎΠ½Π° ΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²Ρ‹ΠΌ ΠΊΠΎΠ΄ΠΎΠΌ, состоящим ΠΈΠ· Π΄Π²ΠΎΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠΎΠ΄ΠΎΠ². Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΠ±ΠΌΠ΅Π½Π½Ρ‹Π΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ ошибки, ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ записи ΠΈ числом Ρ†ΠΈΠΊΠ»ΠΎΠ² пСрСзаписи. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΎΠ±ΠΌΠ΅Π½Π½Ρ‹Π΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Π΅ конструкции ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π·Π° счСт ΠΎΡ‡Π΅Π½ΡŒ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сниТСния плотности записи ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π³Ρ€Π°Π½ΠΈΡ‡Π½ΠΎΠ³ΠΎ значСния числа Ρ†ΠΈΠΊΠ»ΠΎΠ² пСрСзаписи (опрСдСляСмого ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΌ) Π² 2–2.5 Ρ€Π°Π·Π° ΠΏΡ€ΠΈ сохранСнии Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠ³ΠΎ значСния вСроятности ошибки Π½Π° Π±ΠΈΡ‚

    Improving Reliability and Performance of NAND Flash Based Storage System

    Get PDF
    High seek and rotation overhead of magnetic hard disk drive (HDD) motivates development of storage devices, which can offer good random performance. As an alternative technology, NAND flash memory demonstrates low power consumption, microsecond-order access latency and good scalability. Thanks to these advantages, NAND flash based solid state disks (SSD) show many promising applications in enterprise servers. With multi-level cell (MLC) technique, the per-bit fabrication cost is reduced and low production cost enables NAND flash memory to extend its application to the consumer electronics. Despite these advantages, limited memory endurance, long data protection latency and write amplification continue to be the major challenges in the designs of NAND flash storage systems. The limited memory endurance and long data protection latency issue derive from memory bit errors. High bit error rate (BER) severely impairs data integrity and reduces memory durance. The limited endurance is a major obstacle to apply NAND flash memory to the application with high reliability requirement. To protect data integrity, hard-decision error correction codes (ECC) such as Bose-Chaudhuri-Hocquenghem (BCH) are employed. However, the hardware cost becomes prohibitively with the increase of BER when the BCH ECC is employed to extend system lifetime. To extend system lifespan without high hardware cost, we has proposed data pattern aware (DPA) error prevention system design. DPA realizes BER reduction by minimizing the occurrence of data patterns vulnerable to high BER with simple linear feedback shift register circuits. Experimental results show that DPA can increase the system lifetime by up to 4Γ— with marginal hardware cost. With the technology node scaling down to 2Xnm, BER increases up to 0.01. Hard-decision ECCs and DPA are no longer applicable to guarantee data integrity due to either prohibitively high hardware cost or high storage overhead. Soft-decision ECC, such as lowdensity parity check (LDPC) code, has been introduced to provide more powerful error correction capability. However, LDPC code demands extra memory sensing operations, directly leading to long read latency. To reduce LDPC code induced read latency without adverse impact on system reliability, we has proposed FlexLevel NAND flash storage system design. The FlexLevel design reduces BER by broadening the noise margin via threshold voltage (Vth) level reduction. Under relatively low BER, no extra sensing level is required and therefore read performance can be improved. To balance Vth level reduction induced capacity loss and the read speedup, the FlexLevel design identifies the data with high LDPC overhead and only performs Vth reduction to these data. Experimental results show that compared with the best existing works, the proposed design achieves up to 11% read speedup with negligible capacity loss. Write amplification is a major cause to performance and endurance degradation of the NAND flash based storage system. In the object-based NAND flash device (ONFD), write amplification partially results from onode partial update and cascading update. Onode partial update only over-writes partial data of a NAND flash page and incurs unnecessary data migration of the un-updated data. Cascading update is update to object metadata in a cascading manner due to object data update or migration. Even through only several bytes in the object metadata are updated, one or more page has to be re-written, significantly degrading write performance. To minimize write operations incurred by onode partial update and cascading update, we has proposed a Data Migration Minimizing (DMM) device design. The DMM device incorporates 1) the multi-level garbage collection technique to minimize the unnecessary data migration of onode partial update and 2) the virtual B+ tree and diff cache to reduce the write operations incurred by cascading update. The experiment results demonstrate that the DMM device can offer up to 20% write reduction compared with the best state-of-art works

    NAND flash compiler using the SkyWater 130nm Process

    Get PDF
    NAND flash memory is commonly used for data storage, with applications in SSDs and flash drives. NAND flash research in academia can be limited by insufficient access to memory of varied sizes. This thesis discusses the design of a NAND flash memory compiler. This compiler provides researchers access to a customizable flash array. The array is built using the SkyWater Technology 130nm Process Design Kit (PDK) and SONOS flash technology. A detailed review of the implementation is included covering both the physical design of the flash array as well as the design of the compiler. The result of the compiler is able to be fabricated, as shown by an approved submission to Efabless' Multi-Project Wafer (MPW) shuttle program. The results consist of simulations that prove the functionality of the flash array
    corecore