401 research outputs found

    A distributed and energy‑efficient KNN for EEG classification with dynamic money‑saving policy in heterogeneous clusters

    Get PDF
    Universidad de Granada/CBUASpanish Ministry of Science, Innovation, and Universities under Grants PGC2018-098813-B-C31,PID2022-137461NB-C32ERDF fund. Funding for open access charge: University of Granada/ CBU

    Mobile Big Data Analytics in Healthcare

    Get PDF
    Mobile and ubiquitous devices are everywhere around us generating considerable amount of data. The concept of mobile computing and analytics is expanding due to the fact that we are using mobile devices day in and out without even realizing it. These mobile devices use Wi-Fi, Bluetooth or mobile data to be intermittently connected to the world, generating, sending and receiving data on the move. Latest mobile applications incorporating graphics, video and audio are main causes of loading the mobile devices by consuming battery, memory and processing power. Mobile Big data analytics includes for instance, big health data, big location data, big social media data, and big heterogeneous data. Healthcare is undoubtedly one of the most data-intensive industries nowadays and the challenge is not only in acquiring, storing, processing and accessing data, but also in engendering useful insights out of it. These insights generated from health data may reduce health monitoring cost, enrich disease diagnosis, therapy, and care and even lead to human lives saving. The challenge in mobile data and Big data analytics is how to meet the growing performance demands of these activities while minimizing mobile resource consumption. This thesis proposes a scalable architecture for mobile big data analytics implementing three new algorithms (i.e. Mobile resources optimization, Mobile analytics customization and Mobile offloading), for the effective usage of resources in performing mobile data analytics. Mobile resources optimization algorithm monitors the resources and switches off unused network connections and application services whenever resources are limited. However, analytics customization algorithm attempts to save energy by customizing the analytics process while implementing some data-aware techniques. Finally, mobile offloading algorithm decides on the fly whether to process data locally or delegate it to a Cloud back-end server. The ultimate goal of this research is to provide healthcare decision makers with the advancements in mobile Big data analytics and support them in handling large and heterogeneous health datasets effectively on the move

    Energy-aware Load Balancing of Parallel Evolutionary Algorithms with Heavy Fitness Functions in Heterogeneous CPU-GPU Architectures

    Get PDF
    By means of the availability of mechanisms such as Dynamic Voltage and Frequency Scaling (DVFS) and heterogeneous architectures including processors with different power consumption profiles, it is possible to devise scheduling algorithms aware of both runtime and energy consumption in parallel programs. In this paper, we propose and evaluate a multi-objective (more specifically, a bi-objective) approach to distribute the workload among the processing cores in a given heterogeneous parallel CPU-GPU architecture. The aim of this distribution may be either to save energy without increasing the running time or to reach a trade-off among time and energy consumption. The parallel programs considered here are master-worker evolutionary algorithms where the evaluation of the fitness function for the individuals in the population demands the most part of the computing time. As many useful bioinformatics and data mining applications exhibit this kind of parallel profile, the proposed energy-aware approach for workload scheduling could be frequently applied.Spanish Ministerio de Economía y Competitividad under grant TIN2015-67020-PERDF fun

    A Computational Framework to Support the Automated Analysis of Routine Electroencephalographic Data

    Get PDF
    Epilepsy is a condition in which a patient has multiple unprovoked seizures which are not precipitated by another medical condition. It is a common neurological disorder that afflicts 1% of the population of the US, and is sometimes hard to diagnose if seizures are infrequent. Routine Electroencephalography (rEEG), where the electrical potentials of the brain are recorded on the scalp of a patient, is one of the main tools for diagnosing because rEEG can reveal indicators of epilepsy when patients are in a non-seizure state. Interpretation of rEEG is difficult and studies have shown that 20-30% of patients at specialized epilepsy centers are misdiagnosed. An improved ability to interpret rEEG could decrease the misdiagnosis rate of epilepsy. The difficulty in diagnosing epilepsy from rEEG stems from the large quantity, low signal to noise ratio (SNR), and variability of the data. A usual point of error for a clinician interpreting rEEG data is the misinterpretation of PEEs (paroxysmal EEG events) ( short bursts of electrical activity of high amplitude relative to the surrounding signals that have a duration of approximately .1 to 2 seconds). Clinical interpretation of PEEs could be improved with the development of an automated system to detect and classify PEE activity in an rEEG dataset. Systems that have attempted to automatically classify PEEs in the past have had varying degrees of success. These efforts have been hampered to a large extent by the absence of a \gold standard\u27 data set that EEG researchers could use. In this work we present a distributed, web-based collaborative system for collecting and creating a gold standard dataset for the purpose of evaluating spike detection software. We hope to advance spike detection research by creating a performance standard that facilitates comparisons between approaches of disparate research groups. Further, this work endeavors to create a new, high performance parallel implementation of ICA (independent component analysis), a potential preprocessing step for PEE classification. We also demonstrate tools for visualization and analysis to support the initial phases of spike detection research. These tools will first help to develop a standardized rEEG dataset of expert EEG interpreter opinion with which automated analysis can be trained and tested. Secondly, it will attempt to create a new framework for interdisciplinary research that will help improve our understanding of PEEs in rEEG. These improvements could ultimately advance the nuanced art of rEEG interpretation and decrease the misdiagnosis rate that leads to patients suering inappropriate treatment

    Algoritmo Evolutivo Multiobjetivo con Paralelismo Multinivel para Clasificación de EEGs: Análisis Energía-tiempo en Clústeres Heterogéneos

    Get PDF
    Acceso a través de la plataforma ZENODO: https://zenodo.org/record/7181229/#.Y71LhHbMKUkToday's heterogeneous architectures interconnect nodes with multiple microprocessors and multicore accelerators that allow different strategies to accelerate applications and optimize their power consumption. In this work, a multilevel parallel procedure is proposed that takes advantage of all the nodes of a heterogeneous CPU-GPU cluster. Three different versions have been implemented, which have been analyzed in terms of execution time and energy consumption. Although the work considers an evolutionary master-worker algorithm for feature selection and EEG classification, the conclusions of the experimental analysis can be extrapolated to other applications in bioinformatics and data mining with the same computational profile as the problem considered here. The proposed parallel approach allows to reduce the execution time by a factor of up to 83 with only 4.9% of the energy consumed by the sequential procedure.Las arquitecturas heterogéneas actuales interconectan nodos con múltiples microprocesadores y aceleradores multinúcleo que permiten diferentes estrategias para acelerar las aplicaciones y optimizar su consumo de energía. En este trabajo se propone un procedimiento paralelo multinivel que aprovecha todos los nodos de un clúster CPU-GPU heterogéneo. Se han implementado tres versiones diferentes, que han sido analizadas en términos de tiempo de ejecución y consumo energético. Aunque el trabajo considera un algoritmo maestro-trabajador evolutivo para selección de características y clasificación de EEGs, las conclusiones del análisis experimental se pueden extrapolar a otras aplicaciones en bioinformática y minería de datos con el mismo perfil de cómputo que el problema considerado aquí. El enfoque paralelo propuesto permite reducir el tiempo de ejecución en un factor de hasta 83 con sólo un 4,9% de la energía consumida por el procedimiento secuencial.Investigación financiada parcialmente por el Ministerio de Ciencia, Innovación y Universidades (MICIU) junto con el Fondo Europeo de Desarrollo Regional (FEDER), proyecto PGC2018-098813-B-C31

    Resource Management for Edge Computing in Internet of Things (IoT)

    Get PDF
    Die große Anzahl an Geräten im Internet der Dinge (IoT) und deren kontinuierliche Datensammlungen führen zu einem rapiden Wachstum der gesammelten Datenmenge. Die Daten komplett mittels zentraler Cloud Server zu verarbeiten ist ineffizient und zum Teil sogar unmöglich oder unnötig. Darum wird die Datenverarbeitung an den Rand des Netzwerks verschoben, was zu den Konzepten des Edge Computings geführt hat. Informationsverarbeitung nahe an der Datenquelle (z.B. auf Gateways und Edge Geräten) reduziert nicht nur die hohe Arbeitslast zentraler Server und Netzwerke, sondern verringer auch die Latenz für Echtzeitanwendungen, da die potentiell unzuverlässige Kommunikation zu Cloud Servern mit ihrer unvorhersehbaren Netzwerklatenz vermieden wird. Aktuelle IoT Architekturen verwenden Gateways, um anwendungsspezifische Verbindungen zu IoT Geräten herzustellen. In typischen Konfigurationen teilen sich mehrere IoT Edge Geräte ein IoT Gateway. Wegen der begrenzten verfügbaren Bandbreite und Rechenkapazität eines IoT Gateways muss die Servicequalität (SQ) der verbundenen IoT Edge Geräte über die Zeit angepasst werden. Nicht nur um die Anforderungen der einzelnen Nutzer der IoT Geräte zu erfüllen, sondern auch um die SQBedürfnisse der anderen IoT Edge Geräte desselben Gateways zu tolerieren. Diese Arbeit untersucht zuerst essentielle Technologien für IoT und existierende Trends. Dabei werden charakteristische Eigenschaften von IoT für die Embedded Domäne, sowie eine umfassende IoT Perspektive für Eingebettete Systeme vorgestellt. Mehrere Anwendungen aus dem Gesundheitsbereich werden untersucht und implementiert, um ein Model für deren Datenverarbeitungssoftware abzuleiten. Dieses Anwendungsmodell hilft bei der Identifikation verschiedener Betriebsmodi. IoT Systeme erwarten von den Edge Geräten, dass sie mehrere Betriebsmodi unterstützen, um sich während des Betriebs an wechselnde Szenarien anpassen zu können. Z.B. Energiesparmodi bei geringen Batteriereserven trotz gleichzeitiger Aufrechterhaltung der kritischen Funktionalität oder einen Modus, um die Servicequalität auf Wunsch des Nutzers zu erhöhen etc. Diese Modi verwenden entweder verschiedene Auslagerungsschemata (z.B. die übertragung von Rohdaten, von partiell bearbeiteten Daten, oder nur des finalen Ergebnisses) oder verschiedene Servicequalitäten. Betriebsmodi unterscheiden sich in ihren Ressourcenanforderungen sowohl auf dem Gerät (z.B. Energieverbrauch), wie auch auf dem Gateway (z.B. Kommunikationsbandbreite, Rechenleistung, Speicher etc.). Die Auswahl des besten Betriebsmodus für Edge Geräte ist eine Herausforderung in Anbetracht der begrenzten Ressourcen am Rand des Netzwerks (z.B. Bandbreite und Rechenleistung des gemeinsamen Gateways), diverser Randbedingungen der IoT Edge Geräte (z.B. Batterielaufzeit, Servicequalität etc.) und der Laufzeitvariabilität am Rand der IoT Infrastruktur. In dieser Arbeit werden schnelle und effiziente Auswahltechniken für Betriebsmodi entwickelt und präsentiert. Wenn sich IoT Geräte in der Reichweite mehrerer Gateways befinden, ist die Verwaltung der gemeinsamen Ressourcen und die Auswahl der Betriebsmodi für die IoT Geräte sogar noch komplexer. In dieser Arbeit wird ein verteilter handelsorientierter Geräteverwaltungsmechanismus für IoT Systeme mit mehreren Gateways präsentiert. Dieser Mechanismus zielt auf das kombinierte Problem des Bindens (d.h. ein Gateway für jedes IoT Gerät bestimmen) und der Allokation (d.h. die zugewiesenen Ressourcen für jedes Gerät bestimmen) ab. Beginnend mit einer initialen Konfiguration verhandeln und kommunizieren die Gateways miteinander und migrieren IoT Geräte zwischen den Gateways, wenn es den Nutzen für das Gesamtsystem erhöht. In dieser Arbeit werden auch anwendungsspezifische Optimierungen für IoT Geräte vorgestellt. Drei Anwendungen für den Gesundheitsbereich wurden realisiert und für tragbare IoT Geräte untersucht. Es wird auch eine neuartige Kompressionsmethode vorgestellt, die speziell für IoT Anwendungen geeignet ist, die Bio-Signale für Gesundheitsüberwachungen verarbeiten. Diese Technik reduziert die zu übertragende Datenmenge des IoT Gerätes, wodurch die Ressourcenauslastung auf dem Gerät und dem gemeinsamen Gateway reduziert wird. Um die vorgeschlagenen Techniken und Mechanismen zu evaluieren, wurden einige Anwendungen auf IoT Plattformen untersucht, um ihre Parameter, wie die Ausführungszeit und Ressourcennutzung, zu bestimmen. Diese Parameter wurden dann in einem Rahmenwerk verwendet, welches das IoT Netzwerk modelliert, die Interaktion zwischen Geräten und Gateway erfasst und den Kommunikationsoverhead sowie die erreichte Batterielebenszeit und Servicequalität der Geräte misst. Die Algorithmen zur Auswahl der Betriebsmodi wurden zusätzlich auf IoT Plattformen implementiert, um ihre Overheads bzgl. Ausführungszeit und Speicherverbrauch zu messen

    System-on-Chip Solution for Patients Biometric: A Compressive Sensing-Based Approach

    Get PDF
    IEEE The ever-increasing demand for biometric solutions for the internet of thing (IoT)-based connected health applications is mainly driven by the need to tackle fraud issues, along with the imperative to improve patient privacy, safety and personalized medical assistance. However, the advantages offered by the IoT platforms come with the burden of big data and its associated challenges in terms of computing complexity, bandwidth availability and power consumption. This paper proposes a solution to tackle both privacy issues and big data transmission by incorporating the theory of compressive sensing (CS) and a simple, yet, efficient identification mechanism using the electrocardiogram (ECG) signal as a biometric trait. Moreover, the paper presents the hardware implementation of the proposed solution on a system on chip (SoC) platform with an optimized architecture to further reduce hardware resource usage. First, we investigate the feasibility of compressing the ECG data while maintaining a high identification quality. The obtained results show a 98.88% identification rate using only a compression ratio of 30%. Furthermore, the proposed system has been implemented on a Zynq SoC using heterogeneous software/hardware solution, which is able to accelerate the software implementation by a factor of 7.73 with a power consumption of 2.318 W
    corecore