375 research outputs found

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Automatic Transcription of Polyphonic Vocal Music

    Get PDF
    This paper presents a method for automatic music transcription applied to audio recordings of a cappella performances with multiple singers. We propose a system for multi-pitch detection and voice assignment that integrates an acoustic and a music language model. The acoustic model performs spectrogram decomposition, extending probabilistic latent component analysis (PLCA) using a six-dimensional dictionary with pre-extracted log-spectral templates. The music language model performs voice separation and assignment using hidden Markov models that apply musicological assumptions. By integrating the two models, the system is able to detect multiple concurrent pitches in polyphonic vocal music and assign each detected pitch to a specific voice type such as soprano, alto, tenor or bass (SATB). We compare our system against multiple baselines, achieving state-of-the-art results for both multi-pitch detection and voice assignment on a dataset of Bach chorales and another of barbershop quartets. We also present an additional evaluation of our system using varied pitch tolerance levels to investigate its performance at 20-cent pitch resolution

    Non-Negative Group Sparsity with Subspace Note Modelling for Polyphonic Transcription

    Get PDF
    This work was supported by EPSRC Platform Grant EPSRC EP/K009559/1, EPSRC Grant EP/L027119/1, and EPSRC Grant EP/J010375/1

    Classification of Animal Sound Using Convolutional Neural Network

    Get PDF
    Recently, labeling of acoustic events has emerged as an active topic covering a wide range of applications. High-level semantic inference can be conducted based on main audioeffects to facilitate various content-based applications for analysis, efficient recovery and content management. This paper proposes a flexible Convolutional neural network-based framework for animal audio classification. The work takes inspiration from various deep neural network developed for multimedia classification recently. The model is driven by the ideology of identifying the animal sound in the audio file by forcing the network to pay attention to core audio effect present in the audio to generate Mel-spectrogram. The designed framework achieves an accuracy of 98% while classifying the animal audio on weekly labelled datasets. The state-of-the-art in this research is to build a framework which could even run on the basic machine and do not necessarily require high end devices to run the classification
    corecore