1,222 research outputs found

    Improving average ranking precision in user searches for biomedical research datasets

    Full text link
    Availability of research datasets is keystone for health and life science study reproducibility and scientific progress. Due to the heterogeneity and complexity of these data, a main challenge to be overcome by research data management systems is to provide users with the best answers for their search queries. In the context of the 2016 bioCADDIE Dataset Retrieval Challenge, we investigate a novel ranking pipeline to improve the search of datasets used in biomedical experiments. Our system comprises a query expansion model based on word embeddings, a similarity measure algorithm that takes into consideration the relevance of the query terms, and a dataset categorisation method that boosts the rank of datasets matching query constraints. The system was evaluated using a corpus with 800k datasets and 21 annotated user queries. Our system provides competitive results when compared to the other challenge participants. In the official run, it achieved the highest infAP among the participants, being +22.3% higher than the median infAP of the participant's best submissions. Overall, it is ranked at top 2 if an aggregated metric using the best official measures per participant is considered. The query expansion method showed positive impact on the system's performance increasing our baseline up to +5.0% and +3.4% for the infAP and infNDCG metrics, respectively. Our similarity measure algorithm seems to be robust, in particular compared to Divergence From Randomness framework, having smaller performance variations under different training conditions. Finally, the result categorization did not have significant impact on the system's performance. We believe that our solution could be used to enhance biomedical dataset management systems. In particular, the use of data driven query expansion methods could be an alternative to the complexity of biomedical terminologies

    Experiments in terabyte searching, genomic retrieval and novelty detection for TREC 2004

    Get PDF
    In TREC2004, Dublin City University took part in three tracks, Terabyte (in collaboration with University College Dublin), Genomic and Novelty. In this paper we will discuss each track separately and present separate conclusions from this work. In addition, we present a general description of a text retrieval engine that we have developed in the last year to support our experiments into large scale, distributed information retrieval, which underlies all of the track experiments described in this document

    Factors affecting the effectiveness of biomedical document indexing and retrieval based on terminologies

    Get PDF
    International audienceThe aim of this work is to evaluate a set of indexing and retrieval strategies based on the integration of several biomedical terminologies on the available TREC Genomics collections for an ad hoc information retrieval (IR) task.Materials and methodsWe propose a multi-terminology based concept extraction approach to selecting best concepts from free text by means of voting techniques. We instantiate this general approach on four terminologies (MeSH, SNOMED, ICD-10 and GO). We particularly focus on the effect of integrating terminologies into a biomedical IR process, and the utility of using voting techniques for combining the extracted concepts from each document in order to provide a list of unique concepts.ResultsExperimental studies conducted on the TREC Genomics collections show that our multi-terminology IR approach based on voting techniques are statistically significant compared to the baseline. For example, tested on the 2005 TREC Genomics collection, our multi-terminology based IR approach provides an improvement rate of +6.98% in terms of MAP (mean average precision) (p < 0.05) compared to the baseline. In addition, our experimental results show that document expansion using preferred terms in combination with query expansion using terms from top ranked expanded documents improve the biomedical IR effectiveness.ConclusionWe have evaluated several voting models for combining concepts issued from multiple terminologies. Through this study, we presented many factors affecting the effectiveness of biomedical IR system including term weighting, query expansion, and document expansion models. The appropriate combination of those factors could be useful to improve the IR performance

    Modelling the usefulness of document collections for query expansion in patient search

    Get PDF
    Dealing with the medical terminology is a challenge when searching for patients based on the relevance of their medical records towards a given query. Existing work used query expansion (QE) to extract expansion terms from different document collections to improve query representation. However, the usefulness of particular document collections for QE was not measured and taken into account during retrieval. In this work, we investigate two automatic approaches that measure and leverage the usefulness of document collections when exploiting multiple document collections to improve query representation. These two approaches are based on resource selection and learning to rank techniques, respectively. We evaluate our approaches using the TREC Medical Records track’s test collection. Our results show the potential of the proposed approaches, since they can effectively exploit 14 different document collections, including both domain-specific (e.g. MEDLINE abstracts) and generic (e.g. blogs and webpages) collections, and significantly outperform existing effective baselines, including the best systems participating at the TREC Medical Records track. Our analysis shows that the different collections are not equally useful for QE, while our two approaches can automatically weight the usefulness of expansion terms extracted from different document collections effectively.This is the author accepted manuscript. The final version is available from ACM via http://dx.doi.org/10.1145/2806416.280661

    Doctor of Philosophy

    Get PDF
    dissertationMedical knowledge learned in medical school can become quickly outdated given the tremendous growth of the biomedical literature. It is the responsibility of medical practitioners to continuously update their knowledge with recent, best available clinical evidence to make informed decisions about patient care. However, clinicians often have little time to spend on reading the primary literature even within their narrow specialty. As a result, they often rely on systematic evidence reviews developed by medical experts to fulfill their information needs. At the present, systematic reviews of clinical research are manually created and updated, which is expensive, slow, and unable to keep up with the rapidly growing pace of medical literature. This dissertation research aims to enhance the traditional systematic review development process using computer-aided solutions. The first study investigates query expansion and scientific quality ranking approaches to enhance literature search on clinical guideline topics. The study showed that unsupervised methods can improve retrieval performance of a popular biomedical search engine (PubMed). The proposed methods improve the comprehensiveness of literature search and increase the ratio of finding relevant studies with reduced screening effort. The second and third studies aim to enhance the traditional manual data extraction process. The second study developed a framework to extract and classify texts from PDF reports. This study demonstrated that a rule-based multipass sieve approach is more effective than a machine-learning approach in categorizing document-level structures and iv that classifying and filtering publication metadata and semistructured texts enhances the performance of an information extraction system. The proposed method could serve as a document processing step in any text mining research on PDF documents. The third study proposed a solution for the computer-aided data extraction by recommending relevant sentences and key phrases extracted from publication reports. This study demonstrated that using a machine-learning classifier to prioritize sentences for specific data elements performs equally or better than an abstract screening approach, and might save time and reduce errors in the full-text screening process. In summary, this dissertation showed that there are promising opportunities for technology enhancement to assist in the development of systematic reviews. In this modern age when computing resources are getting cheaper and more powerful, the failure to apply computer technologies to assist and optimize the manual processes is a lost opportunity to improve the timeliness of systematic reviews. This research provides methodologies and tests hypotheses, which can serve as the basis for further large-scale software engineering projects aimed at fully realizing the prospect of computer-aided systematic reviews

    Integrating Medical Ontology and Pseudo Relevance Feedback For Medical Document Retrieval

    Get PDF
    The purpose of this thesis is to undertake and improve the accuracy of locating the relevant documents from a large amount of Electronic Medical Data (EMD). The unique goal of this research is to propose a new idea for using medical ontology to find an easy and more reliable approach for patients to have a better understanding of their diseases and also help doctors to find and further improve the possible methods of diagnosis and treatments. The empirical studies were based on the dataset provided by CLEF focused on health care data. In this research, I have used Information Retrieval to find and obtain relevant information within the large amount of data sets provided by CLEF. I then used ranking functionality on the Terrier platform to calculate and evaluate the matching documents in the collection of data sets. BM25 was used as the base normalization method to retrieve the results and Pseudo Relevance Feedback weighting model to retrieve the information regarding patients health history and medical records in order to find more accurate results. I then used Unified Medical Language System to develop indexing of the queries while searching on the Internet and looking for health related documents. UMLS software was actually used to link the computer system with the health and biomedical terms and vocabularies into classify tools; it works as a dictionary for the patients by translating the medical terms. Later I would like to work on using medical ontology to create a relationship between the documents regarding the medical data and my retrieved results

    Combining global and local semantic contexts for improving biomedical information retrieval

    Get PDF
    Présenté lors de l'European Conference on Information Retrieval 2011International audienceIn the context of biomedical information retrieval (IR), this paper explores the relationship between the document's global context and the query's local context in an attempt to overcome the term mismatch problem between the user query and documents in the collection. Most solutions to this problem have been focused on expanding the query by discovering its context, either \textit{global} or \textit{local}. In a global strategy, all documents in the collection are used to examine word occurrences and relationships in the corpus as a whole, and use this information to expand the original query. In a local strategy, the top-ranked documents retrieved for a given query are examined to determine terms for query expansion. We propose to combine the document's global context and the query's local context in an attempt to increase the term overlap between the user query and documents in the collection via document expansion (DE) and query expansion (QE). The DE technique is based on a statistical method (IR-based) to extract the most appropriate concepts (global context) from each document. The QE technique is based on a blind feedback approach using the top-ranked documents (local context) obtained in the first retrieval stage. A comparative experiment on the TREC 2004 Genomics collection demonstrates that the combination of the document's global context and the query's local context shows a significant improvement over the baseline. The MAP is significantly raised from 0.4097 to 0.4532 with a significant improvement rate of +10.62\% over the baseline. The IR performance of the combined method in terms of MAP is also superior to official runs participated in TREC 2004 Genomics and is comparable to the performance of the best run (0.4075)
    • 

    corecore