53 research outputs found

    Improving Noise Robustness in Subspace-based Joint Sparse Recovery

    Full text link
    In a multiple measurement vector problem (MMV), where multiple signals share a common sparse support and are sampled by a common sensing matrix, we can expect joint sparsity to enable a further reduction in the number of required measurements. While a diversity gain from joint sparsity had been demonstrated earlier in the case of a convex relaxation method using an l1/l2l_1/l_2 mixed norm penalty, only recently was it shown that similar diversity gain can be achieved by greedy algorithms if we combine greedy steps with a MUSIC-like subspace criterion. However, the main limitation of these hybrid algorithms is that they often require a large number of snapshots or a high signal-to-noise ratio (SNR) for an accurate subspace as well as partial support estimation. One of the main contributions of this work is to show that the noise robustness of these algorithms can be significantly improved by allowing sequential subspace estimation and support filtering, even when the number of snapshots is insufficient. Numerical simulations show that a novel sequential compressive MUSIC (sequential CS-MUSIC) that combines the sequential subspace estimation and support filtering steps significantly outperforms the existing greedy algorithms and is quite comparable with computationally expensive state-of-art algorithms

    Variational Bayesian Inference of Line Spectra

    Get PDF
    In this paper, we address the fundamental problem of line spectral estimation in a Bayesian framework. We target model order and parameter estimation via variational inference in a probabilistic model in which the frequencies are continuous-valued, i.e., not restricted to a grid; and the coefficients are governed by a Bernoulli-Gaussian prior model turning model order selection into binary sequence detection. Unlike earlier works which retain only point estimates of the frequencies, we undertake a more complete Bayesian treatment by estimating the posterior probability density functions (pdfs) of the frequencies and computing expectations over them. Thus, we additionally capture and operate with the uncertainty of the frequency estimates. Aiming to maximize the model evidence, variational optimization provides analytic approximations of the posterior pdfs and also gives estimates of the additional parameters. We propose an accurate representation of the pdfs of the frequencies by mixtures of von Mises pdfs, which yields closed-form expectations. We define the algorithm VALSE in which the estimates of the pdfs and parameters are iteratively updated. VALSE is a gridless, convergent method, does not require parameter tuning, can easily include prior knowledge about the frequencies and provides approximate posterior pdfs based on which the uncertainty in line spectral estimation can be quantified. Simulation results show that accounting for the uncertainty of frequency estimates, rather than computing just point estimates, significantly improves the performance. The performance of VALSE is superior to that of state-of-the-art methods and closely approaches the Cram\'er-Rao bound computed for the true model order.Comment: 15 pages, 8 figures, accepted for publication in IEEE Transactions on Signal Processin

    Bayesian Inference Methods for Sparse Channel Estimation

    Get PDF

    Analysing datafied life

    No full text
    Our life is being increasingly quantified by data. To obtain information from quantitative data, we need to develop various analysis methods, which can be drawn from diverse fields, such as computer science, information theory and statistics. This thesis focuses on investigating methods for analysing data generated for medical research. Its focus is on the purpose of using various data to quantify patients for personalized treatment. From the perspective of data type, this thesis proposes analysis methods for the data from the fields of Bioinformatics and medical imaging. We will discuss the need of using data from molecular level to pathway level and also incorporating medical imaging data. Different preprocessing methods should be developed for different data types, while some post-processing steps for various data types, such as classification and network analysis, can be done by a generalized approach. From the perspective of research questions, this thesis studies methods for answering five typical questions from simple to complex. These questions are detecting associations, identifying groups, constructing classifiers, deriving connectivity and building dynamic models. Each research question is studied in a specific field. For example, detecting associations is investigated for fMRI signals. However, the proposed methods can be naturally extended to solve questions in other fields. This thesis has successfully demonstrated that applying a method traditionally used in one field to a new field can bring lots of new insights. Five main research contributions for different research questions have been made in this thesis. First, to detect active brain regions associated to tasks using fMRI signals, a new significance index, CR-value, has been proposed. It is originated from the idea of using sparse modelling in gene association study. Secondly, in quantitative Proteomics analysis, a clustering based method has been developed to extract more information from large scale datasets than traditional methods. Clustering methods, which are usually used in finding subgroups of samples or features, are used to match similar identities across samples. Thirdly, a pipeline originally proposed in the field of Bioinformatics has been adapted to multivariate analysis of fMRI signals. Fourthly, the concept of elastic computing in computer science has been used to develop a new method for generating functional connectivity from fMRI data. Finally, sparse signal recovery methods from the domain of signal processing are suggested to solve the underdetermined problem of network model inference.Open Acces
    • …
    corecore