117 research outputs found

    Cross-language Information Retrieval

    Full text link
    Two key assumptions shape the usual view of ranked retrieval: (1) that the searcher can choose words for their query that might appear in the documents that they wish to see, and (2) that ranking retrieved documents will suffice because the searcher will be able to recognize those which they wished to find. When the documents to be searched are in a language not known by the searcher, neither assumption is true. In such cases, Cross-Language Information Retrieval (CLIR) is needed. This chapter reviews the state of the art for CLIR and outlines some open research questions.Comment: 49 pages, 0 figure

    Facilitating Information Access for Heterogeneous Data Across Many Languages

    Get PDF
    Information access, which enables people to identify, retrieve, and use information freely and effectively, has attracted interest from academia and industry. Systems for document retrieval and question answering have helped people access information in powerful and useful ways. Recently, natural language technologies based on neural network have been applied to various tasks for information access. Specifically, transformer-based pre-trained models have pushed tasks such as document and passage retrieval to new state-of-the-art effectiveness. (1) Most of the research has focused on helping people access passages and documents on the web. However, there is abundant information stored in other formats such as semi-structured tables and domain-specific relational databases in companies. Development of the models and frameworks that support access information from these data formats is also essential. (2) Moreover, most of the advances in information access research are based on English, leaving other languages less explored. It is insufficient and inequitable in our globalized and connected world to serve only speakers of English. In this thesis, we explore and develop models and frameworks that could alleviate the aforementioned challenges. This dissertation consists of three parts. We begin with a discussion on developing models designed for accessing data in formats other than passages and documents. We mainly focus on two data formats, namely semi-structured tables and relational databases. In the second part, we discuss methods that can enhance the user experience for non-English speakers when using information access systems. Specifically, we first introduce model development for multilingual knowledge graph integration, which can benefit many information access applications such as cross-lingual question answering systems and other knowledge-driven cross-lingual NLP applications. We further focus on multilingual document dense retrieval and reranking that boost the effectiveness of search engines for non-English information access. Last but not least, we take a step further based on the aforementioned two parts by investigating models and frameworks that can facilitate non-English speakers to access structured data. In detail, we present cross-lingual Text-to-SQL semantic parsing systems that enable non-English speakers to query relational databases with queries in their languages

    Character-level and syntax-level models for low-resource and multilingual natural language processing

    Get PDF
    There are more than 7000 languages in the world, but only a small portion of them benefit from Natural Language Processing resources and models. Although languages generally present different characteristics, “cross-lingual bridges” can be exploited, such as transliteration signals and word alignment links. Such information, together with the availability of multiparallel corpora and the urge to overcome language barriers, motivates us to build models that represent more of the world’s languages. This thesis investigates cross-lingual links for improving the processing of low-resource languages with language-agnostic models at the character and syntax level. Specifically, we propose to (i) use orthographic similarities and transliteration between Named Entities and rare words in different languages to improve the construction of Bilingual Word Embeddings (BWEs) and named entity resources, and (ii) exploit multiparallel corpora for projecting labels from high- to low-resource languages, thereby gaining access to weakly supervised processing methods for the latter. In the first publication, we describe our approach for improving the translation of rare words and named entities for the Bilingual Dictionary Induction (BDI) task, using orthography and transliteration information. In our second work, we tackle BDI by enriching BWEs with orthography embeddings and a number of other features, using our classification-based system to overcome script differences among languages. The third publication describes cheap cross-lingual signals that should be considered when building mapping approaches for BWEs since they are simple to extract, effective for bootstrapping the mapping of BWEs, and overcome the failure of unsupervised methods. The fourth paper shows our approach for extracting a named entity resource for 1340 languages, including very low-resource languages from all major areas of linguistic diversity. We exploit parallel corpus statistics and transliteration models and obtain improved performance over prior work. Lastly, the fifth work models annotation projection as a graph-based label propagation problem for the part of speech tagging task. Part of speech models trained on our labeled sets outperform prior work for low-resource languages like Bambara (an African language spoken in Mali), Erzya (a Uralic language spoken in Russia’s Republic of Mordovia), Manx (the Celtic language of the Isle of Man), and Yoruba (a Niger-Congo language spoken in Nigeria and surrounding countries)

    Pretrained Transformers for Text Ranking: BERT and Beyond

    Get PDF
    The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading

    End-to-End Multilingual Information Retrieval with Massively Large Synthetic Datasets

    Get PDF
    End-to-end neural networks have revolutionized various fields of artificial intelligence. However, advancements in the field of Cross-Lingual Information Retrieval (CLIR) have been stalled due to the lack of large-scale labeled data. CLIR is a retrieval task in which search queries and candidate documents are in different languages. CLIR can be very useful in some scenarios: for example, a reporter may want to search foreign-language news to obtain different perspectives for her story; an inventor may explore the patents in another country to understand prior art. This dissertation addresses the bottleneck in end-to-end neural CLIR research by synthesizing large-scale CLIR training data and examining techniques that can exploit this in various CLIR tasks. We publicly release the Large-Scale CLIR dataset and CLIRMatrix, two synthetic CLIR datasets covering a large variety of language directions. We explore and evaluate several neural architectures for end-to-end CLIR modeling. Results show that multilingual information retrieval systems trained on these synthetic CLIR datasets are helpful for many language pairs, especially those in low-resource settings. We further show how these systems can be adapted to real-world scenarios

    Enabling Cross-lingual Information Retrieval for African Languages

    Get PDF
    Language diversity in NLP is critical in enabling the development of tools for a wide range of users. However, there are limited resources for building such tools for many languages, particularly those spoken in Africa. For search, most existing datasets feature few to no African languages, directly impacting researchers’ ability to build and improve information access capabilities in those languages. Motivated by this, we created AfriCLIRMatrix, a test collection for cross-lingual information retrieval research in 15 diverse African languages automatically created from Wikipedia. The dataset comprises 6 million queries in English and 23 million relevance judgments automatically extracted from Wikipedia inter-language links. We extract 13,050 test queries with relevant judgments across 15 languages, covering a significantly broader range of African languages than other existing information retrieval test collections. In addition to providing a much-needed resource for researchers, we also release BM25, dense retrieval, and sparse-dense hybrid baselines to establish a starting point for the development of future systems. We hope that our efforts will stimulate further research in information retrieval for African languages and lead to the creation of more effective tools for the benefit of users
    • …
    corecore