18,759 research outputs found

    How to Train a CAT: Learning Canonical Appearance Transformations for Direct Visual Localization Under Illumination Change

    Full text link
    Direct visual localization has recently enjoyed a resurgence in popularity with the increasing availability of cheap mobile computing power. The competitive accuracy and robustness of these algorithms compared to state-of-the-art feature-based methods, as well as their natural ability to yield dense maps, makes them an appealing choice for a variety of mobile robotics applications. However, direct methods remain brittle in the face of appearance change due to their underlying assumption of photometric consistency, which is commonly violated in practice. In this paper, we propose to mitigate this problem by training deep convolutional encoder-decoder models to transform images of a scene such that they correspond to a previously-seen canonical appearance. We validate our method in multiple environments and illumination conditions using high-fidelity synthetic RGB-D datasets, and integrate the trained models into a direct visual localization pipeline, yielding improvements in visual odometry (VO) accuracy through time-varying illumination conditions, as well as improved metric relocalization performance under illumination change, where conventional methods normally fail. We further provide a preliminary investigation of transfer learning from synthetic to real environments in a localization context. An open-source implementation of our method using PyTorch is available at https://github.com/utiasSTARS/cat-net.Comment: In IEEE Robotics and Automation Letters (RA-L) and presented at the IEEE International Conference on Robotics and Automation (ICRA'18), Brisbane, Australia, May 21-25, 201

    Featureless visual processing for SLAM in changing outdoor environments

    Get PDF
    Vision-based SLAM is mostly a solved problem providing clear, sharp images can be obtained. However, in outdoor environments a number of factors such as rough terrain, high speeds and hardware limitations can result in these conditions not being met. High speed transit on rough terrain can lead to image blur and under/over exposure, problems that cannot easily be dealt with using low cost hardware. Furthermore, recently there has been a growth in interest in lifelong autonomy for robots, which brings with it the challenge in outdoor environments of dealing with a moving sun and lack of constant artificial lighting. In this paper, we present a lightweight approach to visual localization and visual odometry that addresses the challenges posed by perceptual change and low cost cameras. The approach combines low resolution imagery with the SLAM algorithm, RatSLAM. We test the system using a cheap consumer camera mounted on a small vehicle in a mixed urban and vegetated environment, at times ranging from dawn to dusk and in conditions ranging from sunny weather to rain. We first show that the system is able to provide reliable mapping and recall over the course of the day and incrementally incorporate new visual scenes from different times into an existing map. We then restrict the system to only learning visual scenes at one time of day, and show that the system is still able to localize and map at other times of day. The results demonstrate the viability of the approach in situations where image quality is poor and environmental or hardware factors preclude the use of visual features

    Video Registration in Egocentric Vision under Day and Night Illumination Changes

    Full text link
    With the spread of wearable devices and head mounted cameras, a wide range of application requiring precise user localization is now possible. In this paper we propose to treat the problem of obtaining the user position with respect to a known environment as a video registration problem. Video registration, i.e. the task of aligning an input video sequence to a pre-built 3D model, relies on a matching process of local keypoints extracted on the query sequence to a 3D point cloud. The overall registration performance is strictly tied to the actual quality of this 2D-3D matching, and can degrade if environmental conditions such as steep changes in lighting like the ones between day and night occur. To effectively register an egocentric video sequence under these conditions, we propose to tackle the source of the problem: the matching process. To overcome the shortcomings of standard matching techniques, we introduce a novel embedding space that allows us to obtain robust matches by jointly taking into account local descriptors, their spatial arrangement and their temporal robustness. The proposal is evaluated using unconstrained egocentric video sequences both in terms of matching quality and resulting registration performance using different 3D models of historical landmarks. The results show that the proposed method can outperform state of the art registration algorithms, in particular when dealing with the challenges of night and day sequences

    Learning Matchable Image Transformations for Long-term Metric Visual Localization

    Full text link
    Long-term metric self-localization is an essential capability of autonomous mobile robots, but remains challenging for vision-based systems due to appearance changes caused by lighting, weather, or seasonal variations. While experience-based mapping has proven to be an effective technique for bridging the `appearance gap,' the number of experiences required for reliable metric localization over days or months can be very large, and methods for reducing the necessary number of experiences are needed for this approach to scale. Taking inspiration from color constancy theory, we learn a nonlinear RGB-to-grayscale mapping that explicitly maximizes the number of inlier feature matches for images captured under different lighting and weather conditions, and use it as a pre-processing step in a conventional single-experience localization pipeline to improve its robustness to appearance change. We train this mapping by approximating the target non-differentiable localization pipeline with a deep neural network, and find that incorporating a learned low-dimensional context feature can further improve cross-appearance feature matching. Using synthetic and real-world datasets, we demonstrate substantial improvements in localization performance across day-night cycles, enabling continuous metric localization over a 30-hour period using a single mapping experience, and allowing experience-based localization to scale to long deployments with dramatically reduced data requirements.Comment: In IEEE Robotics and Automation Letters (RA-L) and presented at the IEEE International Conference on Robotics and Automation (ICRA'20), Paris, France, May 31-June 4, 202
    • …
    corecore