867 research outputs found

    Discoverable Free Space Gesture Sets for Walk-Up-and-Use Interactions

    Get PDF
    abstract: Advances in technology are fueling a movement toward ubiquity for beyond-the-desktop systems. Novel interaction modalities, such as free space or full body gestures are becoming more common, as demonstrated by the rise of systems such as the Microsoft Kinect. However, much of the interaction design research for such systems is still focused on desktop and touch interactions. Current thinking in free-space gestures are limited in capability and imagination and most gesture studies have not attempted to identify gestures appropriate for public walk-up-and-use applications. A walk-up-and-use display must be discoverable, such that first-time users can use the system without any training, flexible, and not fatiguing, especially in the case of longer-term interactions. One mechanism for defining gesture sets for walk-up-and-use interactions is a participatory design method called gesture elicitation. This method has been used to identify several user-generated gesture sets and shown that user-generated sets are preferred by users over those defined by system designers. However, for these studies to be successfully implemented in walk-up-and-use applications, there is a need to understand which components of these gestures are semantically meaningful (i.e. do users distinguish been using their left and right hand, or are those semantically the same thing?). Thus, defining a standardized gesture vocabulary for coding, characterizing, and evaluating gestures is critical. This dissertation presents three gesture elicitation studies for walk-up-and-use displays that employ a novel gesture elicitation methodology, alongside a novel coding scheme for gesture elicitation data that focuses on features most important to users’ mental models. Generalizable design principles, based on the three studies, are then derived and presented (e.g. changes in speed are meaningful for scroll actions in walk up and use displays but not for paging or selection). The major contributions of this work are: (1) an elicitation methodology that aids users in overcoming biases from existing interaction modalities; (2) a better understanding of the gestural features that matter, e.g. that capture the intent of the gestures; and (3) generalizable design principles for walk-up-and-use public displays.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    A three-step interaction pattern for improving discoverability in finger identification techniques

    Get PDF
    Publié dans : UIST'14 Adjunct Proceedings of the adjunct publication of the 27th annual ACM symposium on User interface software and technologyInternational audienceIdentifying which fingers are in contact with a multi-touch surface provides a very large input space that can be leveraged for command selection. However, the numerous possibilities enabled by such vast space come at the cost of discoverability. To alleviate this problem, we introduce a three-step interaction pattern inspired by hotkeys that also supports feedforward. We illustrate this interaction with three applications allowing us to explore and adapt it in different context

    Designing Discoverable Digital Tabletop Menus for Public Settings

    Get PDF
    Ease of use with digital tabletops in public settings is contingent on how well the system invites and guides interaction. The same can be said for the interface design and individual graphical user interface elements of these systems. One such interface element is menus. Prior to a menu being used however, it must first be discovered within the interface. Existing research pertaining to digital tabletop menu design does not address this issue of discovering or opening a menu. This thesis investigates how the interface and interaction of digital tabletops can be designed to encourage menu discoverability in the context of public settings. A set of menu invocation designs varying on the invocation element and use of animation are proposed. These designs are then evaluated through an observational study at a museum to observe users interactions in a realistic public setting. Findings from this study propose the use of discernible and recognizable interface elements – buttons – supported by the use of animation to attract and guide users as a discoverable menu invocation design. Additionally, findings posit that when engaging with a public digital tabletop display, users transition through exploration and discovery states before becoming competent with the system. Finally, insights from this study point to a set of design recommendations for improving menu discoverability

    Increasing Passersby Engagement with Public Large Interactive Surfaces

    Get PDF
    Despite the proliferation of Public Large Interactive Surfaces (PLISs), and their potential to provide a more engaging and interactive user experience, these surfaces often go unnoticed by passersby, or not immediately comprehensible in terms of usage. Current research in addressing this problem involves modeling the user-surface interaction through observational studies, and deriving recommendations for interface design to facilitate the interaction. This approach is often context-specific, requires elaborate setup, and lacks experimental control. To mitigate this problem, an interaction model, named DISCOVER, was developed by drawing ideas from classic usability research and focusing on the discoverability aspect of the interaction. This approach allows the model to serve as a lens for understanding and synthesizing existing work on PLISs, and to be used as an evaluation framework to assess effectiveness of potential designs. To accompany this evaluation capability, a laboratory-based evaluation methodology was developed to allow researchers to quickly implement and evaluate potential designs, particularly for the early stages of interaction that precede the more commonly studied explicit and direct interaction (e.g., touches, mid-air gestures). Using the model and the evaluation methodology, a proximity-based interaction mechanism using animated content and shadow visualizations was designed and evaluated as an effective technique in drawing attention from unknowing study participants. A follow-up, more conventional in-the-wild study also verified this finding, and further demonstrated the usefulness of shadow visualizations in drawing attention from passersby, retaining them, and enticing playful interaction. The goal of this thesis is to better equip researchers and practitioners of PLISs with tools that allow them to evaluate and improve existing interfaces, and to provide them with insights into designing future ones employing better and more engaging technologies

    Challenges and Opportunities for the Design of Smart Speakers

    Full text link
    Advances in voice technology and voice user interfaces (VUIs) -- such as Alexa, Siri, and Google Home -- have opened up the potential for many new types of interaction. However, despite the potential of these devices reflected by the growing market and body of VUI research, there is a lingering sense that the technology is still underused. In this paper, we conducted a systematic literature review of 35 papers to identify and synthesize 127 VUI design guidelines into five themes. Additionally, we conducted semi-structured interviews with 15 smart speaker users to understand their use and non-use of the technology. From the interviews, we distill four design challenges that contribute the most to non-use. Based on their (non-)use, we identify four opportunity spaces for designers to explore such as focusing on information support while multitasking (cooking, driving, childcare, etc), incorporating users' mental models for smart speakers, and integrating calm design principles.Comment: 15 pages, 7 figure

    Improving the Discoverability of Interactions in Interactive Systems

    Get PDF
    International audienc

    Green Stormwater Infrastructure Planning in Urban Landscapes: Understanding Context, Appearance, Meaning, and Perception

    Get PDF
    Prior research has documented environmental and economic benefits of green stormwater infrastructure (GSI); literature on GSI social benefits is also becoming more prevalent among scholars around the world. This paper aims to understand whether GSI projects are considered as assets to urban neighborhoods or as projects that might introduce a new set of social concerns. Based on field observations of 238 GSI projects and 50 intercept interviews, we investigate selected social aspects of GSI, such as project context, visual appearance, recreational appeal, meaning, and public perception, in two neighboring US cities—Philadelphia and Camden. Analysis of field data and observation notes revealed that GSI project setting impacted recreational appeal; their appearance was related to maintenance and signage; and their interaction with the public depended on location, land use, and visual/recreational appeal. Most GSI sites with the presence of trash, but the absence of signage were found in potentially disadvantaged areas. According to intercept interviews, many people were not aware of GSI presence in the neighborhood, were not familiar with GSI or its functionality, did not find a way to get access to GSI or interact with them, and were generally concerned about poor design, defective construction, or lack of maintenance. We argue that lack of information and community care/support for GSI can result in social disinvestments in these projects, which can facilitate improper use and maintenance issues, affecting their intended basic environmental functions. Consistent with prior research, we speak to the importance of participatory planning processes in improving community acceptance and interests around GSI planning and installation in urban landscapes
    • …
    corecore