249 research outputs found

    Infrastructure Wi-Fi for connected autonomous vehicle positioning : a review of the state-of-the-art

    Get PDF
    In order to realize intelligent vehicular transport networks and self driving cars, connected autonomous vehicles (CAVs) are required to be able to estimate their position to the nearest centimeter. Traditional positioning in CAVs is realized by using a global navigation satellite system (GNSS) such as global positioning system (GPS) or by fusing weighted location parameters from a GNSS with an inertial navigation systems (INSs). In urban environments where Wi-Fi coverage is ubiquitous and GNSS signals experience signal blockage, multipath or non line-of-sight (NLOS) propagation, enterprise or carrier-grade Wi-Fi networks can be opportunistically used for localization or “fused” with GNSS to improve the localization accuracy and precision. While GNSS-free localization systems are in the literature, a survey of vehicle localization from the perspective of a Wi-Fi anchor/infrastructure is limited. Consequently, this review seeks to investigate recent technological advances relating to positioning techniques between an ego vehicle and a vehicular network infrastructure. Also discussed in this paper is an analysis of the location accuracy, complexity and applicability of surveyed literature with respect to intelligent transportation system requirements for CAVs. It is envisaged that hybrid vehicular localization systems will enable pervasive localization services for CAVs as they travel through urban canyons, dense foliage or multi-story car parks

    Range-only SLAM schemes exploiting robot-sensor network cooperation

    Get PDF
    Simultaneous localization and mapping (SLAM) is a key problem in robotics. A robot with no previous knowledge of the environment builds a map of this environment and localizes itself in that map. Range-only SLAM is a particularization of the SLAM problem which only uses the information provided by range sensors. This PhD Thesis describes the design, integration, evaluation and validation of a set of schemes for accurate and e_cient range-only simultaneous localization and mapping exploiting the cooperation between robots and sensor networks. This PhD Thesis proposes a general architecture for range-only simultaneous localization and mapping (RO-SLAM) with cooperation between robots and sensor networks. The adopted architecture has two main characteristics. First, it exploits the sensing, computational and communication capabilities of sensor network nodes. Both, the robot and the beacons actively participate in the execution of the RO-SLAM _lter. Second, it integrates not only robot-beacon measurements but also range measurements between two di_erent beacons, the so-called inter-beacon measurements. Most reported RO-SLAM methods are executed in a centralized manner in the robot. In these methods all tasks in RO-SLAM are executed in the robot, including measurement gathering, integration of measurements in RO-SLAM and the Prediction stage. These fully centralized RO-SLAM methods require high computational burden in the robot and have very poor scalability. This PhD Thesis proposes three di_erent schemes that works under the aforementioned architecture. These schemes exploit the advantages of cooperation between robots and sensor networks and intend to minimize the drawbacks of this cooperation. The _rst scheme proposed in this PhD Thesis is a RO-SLAM scheme with dynamically con_gurable measurement gathering. Integrating inter-beacon measurements in RO-SLAM signi_cantly improves map estimation but involves high consumption of resources, such as the energy required to gather and transmit measurements, the bandwidth required by the measurement collection protocol and the computational burden necessary to integrate the larger number of measurements. The objective of this scheme is to reduce the increment in resource consumption resulting from the integration of inter-beacon measurements by adopting a centralized mechanism running in the robot that adapts measurement gathering. The second scheme of this PhD Thesis consists in a distributed RO-SLAM scheme based on the Sparse Extended Information Filter (SEIF). This scheme reduces the increment in resource consumption resulting from the integration of inter-beacon measurements by adopting a distributed SLAM _lter in which each beacon is responsible for gathering its measurements to the robot and to other beacons and computing the SLAM Update stage in order to integrate its measurements in SLAM. Moreover, it inherits the scalability of the SEIF. The third scheme of this PhD Thesis is a resource-constrained RO-SLAM scheme based on the distributed SEIF previously presented. This scheme includes the two mechanisms developed in the previous contributions {measurement gathering control and distribution of RO-SLAM Update stage between beacons{ in order to reduce the increment in resource consumption resulting from the integration of inter-beacon measurements. This scheme exploits robot-beacon cooperation to improve SLAM accuracy and e_ciency while meeting a given resource consumption bound. The resource consumption bound is expressed in terms of the maximum number of measurements that can be integrated in SLAM per iteration. The sensing channel capacity used, the beacon energy consumed or the computational capacity employed, among others, are proportional to the number of measurements that are gathered and integrated in SLAM. The performance of the proposed schemes have been analyzed and compared with each other and with existing works. The proposed schemes are validated in real experiments with aerial robots. This PhD Thesis proves that the cooperation between robots and sensor networks provides many advantages to solve the RO-SLAM problem. Resource consumption is an important constraint in sensor networks. The proposed architecture allows the exploitation of the cooperation advantages. On the other hand, the proposed schemes give solutions to the resource limitation without degrading performance

    Coordinated control of mixed robot and sensor networks in distributed area exploration

    Get PDF
    Recent advancements in wireless communication and electronics has enabled the development of multifunctional sensor nodes that are small in size and communicate untethered in short distances. In the last decade, significant advantages have been made in the field of robotics, and robots have become more feasible in systems design. Therefore, we trust that a number of open problems with wireless sensor networks can be solved or diminished by including mobility capabilities in agents

    Localization Services for Online Common Operational Picture and Situation Awareness

    Get PDF
    Many operations, be they military, police, rescue, or other field operations, require localization services and online situation awareness to make them effective. Questions such as how many people are inside a building and their locations are essential. In this paper, an online localization and situation awareness system is presented, called Mobile Urban Situation Awareness System (MUSAS), for gathering and maintaining localization information, to form a common operational picture. The MUSAS provides multiple localization services, as well as visualization of other sensor data, in a common frame of reference. The information and common operational picture of the system is conveyed to all parties involved in the operation, the field team, and people in the command post. In this paper, a general system architecture for enabling localization based situation awareness is designed and the MUSAS system solution is presented. The developed subsystem components and forming of the common operational picture are summarized, and the future potential of the system for various scenarios is discussed. In the demonstration, the MUSAS is deployed to an unknown building, in an ad hoc fashion, to provide situation awareness in an urban indoor military operation.Peer reviewe

    Collaborative Indoor Positioning Systems: A Systematic Review

    Get PDF
    Research and development in Collaborative Indoor Positioning Systems (CIPSs) is growing steadily due to their potential to improve on the performance of their non-collaborative counterparts. In contrast to the outdoors scenario, where Global Navigation Satellite System is widely adopted, in (collaborative) indoor positioning systems a large variety of technologies, techniques, and methods is being used. Moreover, the diversity of evaluation procedures and scenarios hinders a direct comparison. This paper presents a systematic review that gives a general view of the current CIPSs. A total of 84 works, published between 2006 and 2020, have been identified. These articles were analyzed and classified according to the described system’s architecture, infrastructure, technologies, techniques, methods, and evaluation. The results indicate a growing interest in collaborative positioning, and the trend tend to be towards the use of distributed architectures and infrastructure-less systems. Moreover, the most used technologies to determine the collaborative positioning between users are wireless communication technologies (Wi-Fi, Ultra-WideBand, and Bluetooth). The predominant collaborative positioning techniques are Received Signal Strength Indication, Fingerprinting, and Time of Arrival/Flight, and the collaborative methods are particle filters, Belief Propagation, Extended Kalman Filter, and Least Squares. Simulations are used as the main evaluation procedure. On the basis of the analysis and results, several promising future research avenues and gaps in research were identified

    Cooperative Localization on Computationally Constrained Devices

    Get PDF
    Cooperative localization is a useful way for nodes within a network to share location information in order to better arrive at a position estimate. This is handy in GPS contested environments (indoors and urban settings). Most systems exploring cooperative localization rely on special hardware, or extra devices to store the database or do the computations. Research also deals with specific localization techniques such as using Wi-Fi, ultra-wideband signals, or accelerometers independently opposed to fusing multiple sources together. This research brings cooperative localization to the smartphone platform, to take advantage of the multiple sensors that are available. The system is run on Android powered devices, including the wireless hotspot. In order to determine the merit of each sensor, analysis was completed to determine successes and failures. The accelerometer, compass, and received signal strength capability were examined to determine their usefulness in cooperative localization. Experiments at meter intervals show the system detected changes in location at each interval with an average standard deviation of 0.44m. The closest location estimates occurred at 3m, 4m and 6m with average errors of 0.15m, 0.11m, and 0.07m respectively. This indicates that very precise estimates can be achieved with an Android hotspot and mobile nodes

    Soft information for localization-of-things

    Get PDF
    Location awareness is vital for emerging Internetof- Things applications and opens a new era for Localizationof- Things. This paper first reviews the classical localization techniques based on single-value metrics, such as range and angle estimates, and on fixed measurement models, such as Gaussian distributions with mean equal to the true value of the metric. Then, it presents a new localization approach based on soft information (SI) extracted from intra- and inter-node measurements, as well as from contextual data. In particular, efficient techniques for learning and fusing different kinds of SI are described. Case studies are presented for two scenarios in which sensing measurements are based on: 1) noisy features and non-line-of-sight detector outputs and 2) IEEE 802.15.4a standard. The results show that SI-based localization is highly efficient, can significantly outperform classical techniques, and provides robustness to harsh propagation conditions.RYC-2016-1938

    Laitteiden välisen yhteistyön soveltuvuus älypuhelimilla toteutettavaan sisätilapaikannukseen

    Get PDF
    A reliable indoor positioning service for smartphones is a service that is often requested. There are several competing technologies already available but a lot of basic research is still done on the subject. This thesis studies the applicability and technological possibilities of improving the performance of a positioning service using peer to peer collaboration. The Bluetooth low energy technology (BLE) offers a possibility to use peer to peer radio signal measurements with smartphones. This could be used to improve the performance of existing positioning algorithms if enough service users are in close proximity to each other. In this thesis a pedestrian simulation system was implemented to study the probability that two positioning service users are in close enough proximity to each other for BLE usage. The suitability of BLE as the collaboration technology was studied by implementing a particle filter based positioning system that uses BLE measurements to track a smartphone. Finally the collaborative BLE system was integrated on top of an existing geomagnetic tracking algorithm and the effect on the positioning performance was studied. It was concluded that the BLE as a technology is suitable for positioning use despite the large measurement uncertainty. BLE based collaboration is feasible in improving the positioning results provided that the basic positioning technology is reliable enough. The pedestrian simulations concluded that with realistic expected number of users in one building most sessions would not benefit from collaboration but it would still likely happen frequently.Luotettava sisätilapaikannuspalvelu on haluttu ominaisuus mobiilipalveluiden kehityksessä. Useita kilpailevia ratkaisuja on jo markkinoilla, mutta ongelman parissa tehdään vielä huomattavan paljon perustutkimusta. Tässä diplomityössä tutkitaan mahdollisuutta parantaa paikannusjärjestelmän toimintaa käyttäen vertaisyhteistyötä. Bluetooth low energy -teknologia (BLE) tarjoaa mahdollisuuden käyttää laitteiden välisiä radiosignaalimittauksia älypuhelimilla. Tätä voidaan mahdollisesti hyödyntää parantamaan olemassa olevien paikannusalgoritmien toimintaa, jos riittävästi käyttäjiä on riittävän lähellä toisiaan. Tässä diplomityössä toteutettiin ihmisjoukkojen liikettä sisätiloissa mallintava järjestelmä, jolla tutkittiin todennäköisyyttä, että kaksi paikannusjärjestelmän käyttäjää olisi riittävän lähellä toisiaan käyttääkseen BLE-radiomittauksia. BLE:n soveltuvuutta paikannusteknologiana tutkittiin toteuttamalla partikkelisuotimeen perustuva paikannusjärjestelmä, joka käyttää BLE-mittauksia älypuhelimen seuraamiseen. Lopuksi BLE mittausjärjestelmä integroitiin olemassa olevaan magneettikenttään perustuvaan paikannusalgoritmiin ja BLE-yhteistyön vaikutusta algoritmin toimintaan tutkittiin. Työ osoitti, että BLE on paikannuskäyttöön soveltuva teknologia suuresta mittausepävarmuudesta huolimatta. BLE-perusteinen yhteistyö paikannustuloksen parantamisessa on toimiva ratkaisu, mikäli varsinainen paikannusteknologia on riittävän luotettava. Realistisesti odotettavissa olevilla paikannuspalvelun käyttäjämäärillä BLE-yhteistyötä todennäköisesti tapahtuisi suhteellisen usein, vaikka suurin osa paikannussessioista ei pääsisikään hyötymään siitä
    corecore