3,602 research outputs found

    Adaptive buffer power save mechanism for mobile multimedia streaming

    Get PDF
    With the proliferation of wireless networks, the use of mobile devices to stream multimedia is growing in popularity. Although the devices are improving in that they are becoming smaller, more complex and capable of running more applications than ever before, there is one aspect of them that is lagging behind. Batteries have seen little development, even though they are one of the most important parts of the devices. Multimedia streaming puts extra pressure on batteries, causing them to discharge faster. This often means that streaming tasks can not be completed, resulting in significant user dissatisfaction. Consequently, effort is required to devise mechanisms to enable and increase in battery life while streaming multimedia. In this context, this thesis presents a novel algorithm to save power in mobile devices during the streaming of multimedia content. The proposed Adaptive-Buffer Power Save Mechanism (AB-PSM) controls how the data is sent over wireless networks, achieving significant power savings. There is little or no effect on the user and the algorithm is very simple to implement. The thesis describes tests which show the effectiveness of AB-PSM in comparison with the legacy power save mechanism present in IEEE 802.11. The thesis also presents a detailed overview of the IEEE 802.11 protocols and an in-depth literature review in the area of power saving during multimedia streaming. A novel analysis of how the battery of a mobile device is affected by multimedia streaming in its different stages is given. A total-power-save algorithm is then described as a possible extension to the Adaptive-Buffer Power Save Mechanism

    Enhancing IEEE 802.11MAC in congested environments

    Get PDF
    IEEE 802.11 is currently the most deployed wireless local area networking standard. It uses carrier sense multiple access with collision avoidance (CSMA/CA) to resolve contention between nodes. Contention windows (CW) change dynamically to adapt to the contention level: Upon each collision, a node doubles its CW to reduce further collision risks. Upon a successful transmission, the CW is reset, assuming that the contention level has dropped. However, the contention level is more likely to change slowly, and resetting the CW causes new collisions and retransmissions before the CW reaches the optimal value again. This wastes bandwidth and increases delays. In this paper we analyze simple slow CW decrease functions and compare their performances to the legacy standard. We use simulations and mathematical modeling to show their considerable improvements at all contention levels and transient phases, especially in highly congested environments

    Cross Layer Aware Adaptive MAC based on Knowledge Based Reasoning for Cognitive Radio Computer Networks

    Full text link
    In this paper we are proposing a new concept in MAC layer protocol design for Cognitive radio by combining information held by physical layer and MAC layer with analytical engine based on knowledge based reasoning approach. In the proposed system a cross layer information regarding signal to interference and noise ratio (SINR) and received power are analyzed with help of knowledge based reasoning system to determine minimum power to transmit and size of contention window, to minimize backoff, collision, save power and drop packets. The performance analysis of the proposed protocol indicates improvement in power saving, lowering backoff and significant decrease in number of drop packets. The simulation environment was implement using OMNET++ discrete simulation tool with Mobilty framework and MiXiM simulation library.Comment: 8 page

    Techno-economic evaluation of cognitive radio in a factory scenario

    Get PDF
    Wireless applications gradually enter every aspect of our life. Unfortunately, these applications must reuse the same scarce spectrum, resulting in increased interference and limited usability. Cognitive Radio proposes to mitigate this problem by adapting the operational parameters of wireless devices to varying interference conditions. However, it involves an increase in cost. In this paper we examine the economic balance between the added cost and the increased usability in one particular real-life scenario. We focus on the production floor of an industrial installation where wireless sensors monitor production machinery, and a wireless LAN is used as the data backbone. We examine the effects of implementing dynamic spectrum access by means of ideal RE sensing, and model the benefit in terms of increased reliability and battery lifetime. We estimate the financial cost of interference and the potential gain, and conclude that cognitive radio can bring business gains in real-life applications

    Throughput and range characterization of IEEE 802.11ah

    Full text link
    The most essential part of Internet of Things (IoT) infrastructure is the wireless communication system that acts as a bridge for the delivery of data and control messages. However, the existing wireless technologies lack the ability to support a huge amount of data exchange from many battery driven devices spread over a wide area. In order to support the IoT paradigm, the IEEE 802.11 standard committee is in process of introducing a new standard, called IEEE 802.11ah. This is one of the most promising and appealing standards, which aims to bridge the gap between traditional mobile networks and the demands of the IoT. In this paper, we first discuss the main PHY and MAC layer amendments proposed for IEEE 802.11ah. Furthermore, we investigate the operability of IEEE 802.11ah as a backhaul link to connect devices over a long range. Additionally, we compare the aforementioned standard with previous notable IEEE 802.11 amendments (i.e. IEEE 802.11n and IEEE 802.11ac) in terms of throughput (with and without frame aggregation) by utilizing the most robust modulation schemes. The results show an improved performance of IEEE 802.11ah (in terms of power received at long range while experiencing different packet error rates) as compared to previous IEEE 802.11 standards.Comment: 7 pages, 6 figures, 5 table

    Towards efficient coexistence of IEEE 802.15.4e TSCH and IEEE 802.11

    Full text link
    A major challenge in wide deployment of smart wireless devices, using different technologies and sharing the same 2.4 GHz spectrum, is to achieve coexistence across multiple technologies. The IEEE~802.11 (WLAN) and the IEEE 802.15.4e TSCH (WSN) where designed with different goals in mind and both play important roles for respective applications. However, they cause mutual interference and degraded performance while operating in the same space. To improve this situation we propose an approach to enable a cooperative control which type of network is transmitting at given time, frequency and place. We recognize that TSCH based sensor network is expected to occupy only small share of time, and that the nodes are by design tightly synchronized. We develop mechanism enabling over-the-air synchronization of the Wi-Fi network to the TSCH based sensor network. Finally, we show that Wi-Fi network can avoid transmitting in the "collision periods". We provide full design and show prototype implementation based on the Commercial off-the-shelf (COTS) devices. Our solution does not require changes in any of the standards.Comment: 8 page
    • …
    corecore