253 research outputs found

    Belaidžio ryšio tinklų terpės prieigos valdymo tyrimas

    Get PDF
    Over the years, consumer requirements for Quality of Service (QoS) has been growing exponentially. Recently, the ratification process of newly IEEE 802.11ad amendment to IEEE 802.11 was finished. The IEEE 802.11ad is the newly con-sumer wireless communication approach, which will gain high spot on the 5G evolution. Major players in wireless market, such as Qualcomm already are inte-grating solutions from unlicensed band, like IEEE 802.11ac, IEEE 802.11ad into their architecture of LTE PRO (the next evolutionary step for 5G networking) (Qualcomm 2013; Parker et al. 2015). As the demand is growing both in enter-prise wireless networking and home consumer markets. Consumers started to no-tice the performance degradation due to overcrowded unlicensed bands. The un-licensed bands such as 2.4 GHz, 5 GHz are widely used for up-to-date IEEE 802.11n/ac technologies with upcoming IEEE 802.11ax. However, overusage of the available frequency leads to severe interference issue and consequences in to-tal system performance degradation, currently existing wireless medium access method can not sustain the increasing intereference and thus wireless needs a new methods of wireless medium access. The main focal point of this dissertation is to improve wireless performance in dense wireless networks. In dissertation both the conceptual and multi-band wireless medium access methods are considered both from theoretical point of view and experimental usage. The introduction chapter presents the investigated problem and it’s objects of research as well as importance of dissertation and it’s scientific novelty in the unlicensed wireless field. Chapter 1 revises used literature. Existing and up-to-date state-of-the-art so-lution are reviewed, evaluated and key point advantages and disadvantages are analyzed. Conclusions are drawn at the end of the chapter. Chapter 2 describes theoretical analysis of wireless medium access protocols and the new wireless medium access method. During analysis theoretical simula-tions are performed. Conclusions are drawn at the end of the chapter. Chapter 3 is focused on the experimental components evaluation for multi-band system, which would be in line with theoretical concept investigations. The experimental results, showed that components of multi-band system can gain sig-nificant performance increase when compared to the existing IEEE 802.11n/ac wireless systems. General conclusions are drawn after analysis of measurement results

    Network coding-aided MAC protocols for cooperative wireless networks

    Get PDF
    The introduction of third generation (3G) technologies has caused a vast proliferation of wireless devices and networks, generating an increasing demand for high level Quality of Service (QoS). The wide spread of mobile applications has further reinforced the user need for communication, motivating at the same time the concepts of user cooperation and data dissemination. However, this trend towards continuous exchange of information and ubiquitous connectivity is inherently restricted by the energy-greedy functionalities of high-end devices. These limitations, along with the pressure exerted on the Information and Communications Technology (ICT) industry towards energy awareness, have induced the design of novel energy efficient schemes and algorithms. In this context, the Medium Access Control (MAC) layer plays a key role, since it is mainly responsible for the channel access regulation, the transmission scheduling and the resource allocation, thus constituting an appropriate point to effectively address energy efficiency issues that arise due to the users overcrowding. This dissertation provides a contribution to the design, analysis and evaluation of novel MAC protocols for cooperative wireless networks. In our attempt to design energy efficient MAC schemes, we were extensively assisted by the introduction of new techniques, such as Network Coding (NC), that intrinsically bring considerable gains in system performance. The main thesis contributions are divided into two parts. The first part presents NCCARQ, a novel NC-aided Cooperative Automatic Repeat reQuest (ARQ) MAC protocol for wireless networks. NCCARQ introduces a new access paradigm for cooperative ARQ schemes, exploiting NC benefits in bidirectional communication among wireless users. The NCCARQ performance in terms of QoS and energy efficiency is assessed by means of analytical probabilistic models and extensive computer-based simulations, revealing the significant gains we can achieve compared to standardized MAC solutions. In addition, the impact of realistic wireless channel conditions on the MAC protocol operation further motivated us to study the NCCARQ performance in wireless links affected by correlated shadowing, showing that the channel correlation may adversely affect the distributed cooperation benefits. The second part of the thesis is dedicated to the investigation of MAC issues in wireless data dissemination scenarios. In particular, the existence of multiple source nodes in such scenarios generates conflicting situations, considering the selfish behavior of the wireless devices that want to maximize their battery lifetime. Bearing in mind the energy efficiency importance, we propose game theoretic medium access strategies, applying energy-based utility functions which inherently imply energy awareness. In addition, Random Linear NC (RLNC) techniques are adopted to eliminate the need of exchanging excessive control packets, while Analog NC (ANC) is employed to efface the impact of collisions throughout the communication. During the elaboration of this thesis, two general key conclusions have been extracted. First, there is a fundamental requirement for implementation of new MAC protocols in order to effectively deal with state-of-the-art techniques (e.g., NC), recently introduced to enhance both the performance and the energy efficiency of the network. Second, we highlight the importance of designing novel energy efficient MAC protocols, taking into account that traditional approaches - designed mainly to assist the collision avoidance in wireless networks - tend to be obsolete.La presente tesis doctoral contribuye al diseño, análisis y evaluación de nuevos protocolos MAC cooperativos para redes inalámbricas. La introducción de nuevas técnicas, tales como la codificación de red (NC), que intrínsecamente llevan un considerable aumento en el rendimiento del sistema, nos ayudó ampliamente durante el diseño de protocolos MAC energéticamente eficientes. Las principales contribuciones de esta tesis se dividen en dos partes. La primera parte presenta el NCCARQ, un protocolo cooperativo de retransmisión automática (ARQ), asistido por NC para redes inalámbricas. La segunda parte de la tesis se centra en el diseño de protocolos de capa MAC en escenarios inalámbricos de difusión de datos. Teniendo en cuenta la importancia de la eficiencia energética, se proponen técnicas de acceso al medio basadas en teoría de juegos dónde las funciones objetivo están motivadas por el consumo energético. Las soluciones propuestas son evaluadas por medio de modelos analíticos y simulaciones por ordenador

    Analysis of Ethernet Powerlink network and development of a wireless extension based on the IEEE 802.11n WLAN

    Get PDF
    In questa tesi si analizza inizialmente Ethernet POWERLINK (EPL), una delle reti Ethernet Real-Time più popolari grazie alle sue caratteristiche e prestazioni. Viene poi proposta l'estensione wireless della rete POWERLINK basata sulla rete IEEE 802.11n (WLAN), con quest'ultima opportunamente ottimizzata per la comunicazione industriale attraverso l'algoritmo di dynamic rate adaptation RSIN

    Distributed Medium Access Control for QoS Support in Wireless Networks

    Get PDF
    With the rapid growth of multimedia applications and the advances of wireless communication technologies, quality-of-service (QoS) provisioning for multimedia services in heterogeneous wireless networks has been an important issue and drawn much attention from both academia and industry. Due to the hostile transmission environment and limited radio resources, QoS provisioning in wireless networks is much more complex and difficult than in its wired counterpart. Moreover, due to the lack of central controller in the networks, distributed network control is required, adding complexity to QoS provisioning. In this thesis, medium access control (MAC) with QoS provisioning is investigated for both single- and multi-hop wireless networks including wireless local area networks (WLANs), wireless ad hoc networks, and wireless mesh networks. Originally designed for high-rate data traffic, a WLAN has limited capability to support delay-sensitive voice traffic, and the service for voice traffic may be impacted by data traffic load, resulting in delay violation or large delay variance. Aiming at addressing these limitations, we propose an efficient MAC scheme and a call admission control algorithm to provide guaranteed QoS for voice traffic and, at the same time, increase the voice capacity significantly compared with the current WLAN standard. In addition to supporting voice traffic, providing better services for data traffic in WLANs is another focus of our research. In the current WLANs, all the data traffic receives the same best-effort service, and it is difficult to provide further service differentiation for data traffic based on some specific requirements of customers or network service providers. In order to address this problem, we propose a novel token-based scheduling scheme, which provides great flexibility and facility to the network service provider for service class management. As a WLAN has small coverage and cannot meet the growing demand for wireless service requiring communications ``at anywhere and at anytime", a large scale multi-hop wireless network (e.g., wireless ad hoc networks and wireless mesh networks) becomes a necessity. Due to the location-dependent contentions, a number of problems (e.g., hidden/exposed terminal problem, unfairness, and priority reversal problem) appear in a multi-hop wireless environment, posing more challenges for QoS provisioning. To address these challenges, we propose a novel busy-tone based distributed MAC scheme for wireless ad hoc networks, and a collision-free MAC scheme for wireless mesh networks, respectively, taking the different network characteristics into consideration. The proposed schemes enhance the QoS provisioning capability to real-time traffic and, at the same time, significantly improve the system throughput and fairness performance for data traffic, as compared with the most popular IEEE 802.11 MAC scheme

    Mobile Ad-Hoc Networks

    Get PDF
    Ad-hoc networks are a key in the evolution of wireless networks. Ad-hoc networks are typically composed of equal nodes, which communicate over wireless links without any central control. Ad-hoc wireless networks inherit the traditional problems of wireless and mobile communications, such as bandwidth optimisation, power control and transmission quality enhancement. In addition, the multi-hop nature and the lack of fixed infrastructure brings new research problems such as configuration advertising, discovery and maintenance, as well as ad-hoc addressing and self-routing. Many different approaches and protocols have been proposed and there are even multiple standardization efforts within the Internet Engineering Task Force, as well as academic and industrial projects. This chapter focuses on the state of the art in mobile ad-hoc networks. It highlights some of the emerging technologies, protocols, and approaches (at different layers) for realizing network services for users on the move in areas with possibly no pre-existing communications infrastructure

    Link Scheduling Algorithms For In-Band Full-Duplex Wireless Networks

    Get PDF
    In the last two decades, wireless networks and their corresponding data traffic have grown significantly. This is because wireless networks have become an indispens- able and critical communication infrastructure in a modern society. An on-going challenge in communication systems is meeting the continuous increase in traffic de- mands. This is driven by the proliferation of electronic devices such as smartphones with a WiFi interface along with their bandwidth intensive applications. Moreover, in the near future, sensor devices that form the Internet of Things (IoTs) ecosystem will also add to future traffic growth. One promising approach to meet growing traffic demands is to equip nodes with an In-band-Full-Duplex (IBFD) radio. This radio thus allows nodes to transmit and receive data concurrently over the same frequency band. Another approach to in- crease network or link capacity is to exploit the benefits of Multiple-Input-Multiple- Output (MIMO) technologies; namely, (i) spatial diversity gain, which improves Signal-to-Noise Ratio (SNR) and thus has a direct impact on the data rate used by nodes, and (ii) spatial multiplexing gain, whereby nodes are able to form concurrent links to neighbors
    corecore