12 research outputs found

    Hyperspectral and Multispectral Image Fusion using Optimized Twin Dictionaries

    Get PDF
    Spectral or spatial dictionary has been widely used in fusing low-spatial-resolution hyperspectral (LH) images and high-spatial-resolution multispectral (HM) images. However, only using spectral dictionary is insufficient for preserving spatial information, and vice versa. To address this problem, a new LH and HM image fusion method termed OTD using optimized twin dictionaries is proposed in this paper. The fusion problem of OTD is formulated analytically in the framework of sparse representation, as an optimization of twin spectral-spatial dictionaries and their corresponding sparse coefficients. More specifically, the spectral dictionary representing the generalized spectrums and its spectral sparse coefficients are optimized by utilizing the observed LH and HM images in the spectral domain; and the spatial dictionary representing the spatial information and its spatial sparse coefficients are optimized by modeling the rest of high-frequency information in the spatial domain. In addition, without non-negative constraints, the alternating direction methods of multipliers (ADMM) are employed to implement the above optimization process. Comparison results with the related state-of-the-art fusion methods on various datasets demonstrate that our proposed OTD method achieves a better fusion performance in both spatial and spectral domains

    Image Fusion in Remote Sensing and Quality Evaluation of Fused Images

    Get PDF
    In remote sensing, acquired optical images of high spectral resolution have usually a lower spatial resolution than images of lower spectral resolution. This is due to physical, cost and complexity constraints. To make the most of the available imagery, many image fusion techniques have been developed to address this problem. Image fusion is an ill-posed inverse problem where an image of low spatial resolution and high spectral resolution is enhanced in spatial-resolution by using an auxiliary image of high spatial resolution and low spectral resolution. It is assumed that both images display the same scene and are properly co-registered. Thus, the problem is essentially to transfer details from the higher spatial resolution auxiliary image to the upscaled lower resolution image in a manner that minimizes the spatial and spectral distortion of the fused image. The most common image fusion problem is pansharpening, where a multispectral (MS) image is enhanced using wide-band panchromatic (PAN) image. A similar problem is the enhancement of a hyperspectral (HS) image by either a PAN image or an MS image. As there is no reference image available, the reliable quantitative evaluation of the quality of the fused image is a difficult problem. This thesis addresses the image fusion problem in three different ways and also addresses the problem of quantitative quality evaluation.Í fjarkönnun hafa myndir með háa rófsupplausn lægri rúmupplausn en myndir með lægri rófsupplausn vegna eðlisfræðilegra og kostnaðarlegra takmarkana. Til að auka upplýsingamagn slíkra mynda hafa verið þróaðar fjölmargar sambræðsluaðferðir á síðustu tveimur áratugum. Myndsambræðsla er illa framsett andhverft vandmál (e. inverse problem) þar sem rúmupplausn myndar af hárri rófsupplausn er aukin með því að nota upplýsingar frá mynd af hárri rúmupplausn og lægri rófsupplausn. Það er gert ráð fyrir að báðar myndir sýni nákvæmlega sama landsvæði. Þannig er vandamálið í eðli sínu að flytja fíngerða eiginleika myndar af hærri rúmupplausn yfir á mynd af lægri rúmupplausn sem hefur verið brúuð upp í stærð hinnar myndarinnar, án þess að skerða gæði rófsupplýsinga upphaflegu myndarinnar. Algengasta myndbræðsluvandamálið í fjarkönnun er svokölluð panskerpun (e. pansharpening) þar sem fjölrásamynd (e. multispectral image) er endurbætt í rúmi með svokallaðri víðbandsmynd (e. panchromatic image) sem hefur aðeins eina rás af hárri upplausn. Annað svipað vandamál er sambræðsla háfjölrásamyndar (e. hyperspectral image) og annaðhvort fjölrásamyndar eða víðbandsmyndar. Þar sem myndsambræðsla er andhverft vandmál er engin háupplausnar samanburðarmynd tiltæk, sem gerir mat á gæðum sambræddu myndarinnar að erfiðu vandamáli. Í þessari ritgerð eru kynntar þrjár aðferðir sem taka á myndsambræðlsu og einnig er fjallað um mat á gæðum sambræddra mynda, þá sérstaklega panskerptra mynda

    Resolution Enhancement of Hyperspectral Data Exploiting Real Multi-Platform Data

    Get PDF
    Multi-platform data introduce new possibilities in the context of data fusion, as they allow to exploit several remotely sensed images acquired by different combinations of sensors. This scenario is particularly interesting for the sharpening of hyperspectral (HS) images, due to the limited availability of high-resolution (HR) sensors mounted onboard of the same platform as that of the HS device. However, the differences in the acquisition geometry and the nonsimultaneity of this kind of observations introduce further difficulties whose effects have to be taken into account in the design of data fusion algorithms. In this study, we present the most widespread HS image sharpening techniques and assess their performances by testing them over real acquisitions taken by the Earth Observing-1 (EO-1) and the WorldView-3 (WV3) satellites. We also highlight the difficulties arising from the use of multi-platform data and, at the same time, the benefits achievable through this approach

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Information Loss-Guided Multi-Resolution Image Fusion

    Get PDF
    Spatial downscaling is an ill-posed, inverse problem, and information loss (IL) inevitably exists in the predictions produced by any downscaling technique. The recently popularized area-to-point kriging (ATPK)-based downscaling approach can account for the size of support and the point spread function (PSF) of the sensor, and moreover, it has the appealing advantage of the perfect coherence property. In this article, based on the advantages of ATPK and the conceptualization of IL, an IL-guided image fusion (ILGIF) approach is proposed. ILGIF uses the fine spatial resolution images acquired in other wavelengths to predict the IL in ATPK predictions based on the geographically weighted regression (GWR) model, which accounts for the spatial variation in land cover. ILGIF inherits all the advantages of ATPK, and its prediction has perfect coherence with the original coarse spatial resolution data which can be demonstrated mathematically. ILGIF was validated using two data sets and was shown in each case to predict downscaled images more accurately than the compared benchmark methods

    Application of Deep Learning Approaches for Enhancing Mastcam Images

    Get PDF
    There are two mast cameras (Mastcam) onboard the Mars rover Curiosity. Both Mastcams are multispectral imagers with nine bands in each. The right Mastcam has three times higher resolution than the left. In this chapter, we apply some recently developed deep neural network models to enhance the left Mastcam images with help from the right Mastcam images. Actual Mastcam images were used to demonstrate the performance of the proposed algorithms

    Fusion of VNIR Optical and C-Band Polarimetric SAR Satellite Data for Accurate Detection of Temporal Changes in Vegetated Areas

    Get PDF
    In this paper, we propose a processing chain jointly employing Sentinel-1 and Sentinel-2 data, aiming to monitor changes in the status of the vegetation cover by integrating the four 10 m visible and near-infrared (VNIR) bands with the three red-edge (RE) bands of Sentinel-2. The latter approximately span the gap between red and NIR bands (700 nm–800 nm), with bandwidths of 15/20 nm and 20 m pixel spacing. The RE bands are sharpened to 10 m, following the hypersharpening protocol, which holds, unlike pansharpening, when the sharpening band is not unique. The resulting 10 m fusion product may be integrated with polarimetric features calculated from the Interferometric Wide (IW) Ground Range Detected (GRD) product of Sentinel-1, available at 10 m pixel spacing, before the fused data are analyzed for change detection. A key point of the proposed scheme is that the fusion of optical and synthetic aperture radar (SAR) data is accomplished at level of change, through modulation of the optical change feature, namely the difference in normalized area over (reflectance) curve (NAOC), calculated from the sharpened RE bands, by the polarimetric SAR change feature, achieved as the temporal ratio of polarimetric features, where the latter is the pixel ratio between the co-polar and the cross-polar channels. Hyper-sharpening of Sentinel-2 RE bands, calculation of NAOC and modulation-based integration of Sentinel-1 polarimetric change features are applied to multitemporal datasets acquired before and after a fire event, over Mount Serra, in Italy. The optical change feature captures variations in the content of chlorophyll. The polarimetric SAR temporal change feature describes depolarization effects and changes in volumetric scattering of canopies. Their fusion shows an increased ability to highlight changes in vegetation status. In a performance comparison achieved by means of receiver operating characteristic (ROC) curves, the proposed change feature-based fusion approach surpasses a traditional area-based approach and the normalized burned ratio (NBR) index, which is widespread in the detection of burnt vegetation

    Radiometrically-Accurate Hyperspectral Data Sharpening

    Get PDF
    Improving the spatial resolution of hyperpsectral image (HSI) has traditionally been an important topic in the field of remote sensing. Many approaches have been proposed based on various theories including component substitution, multiresolution analysis, spectral unmixing, Bayesian probability, and tensor representation. However, these methods have some common disadvantages, such as that they are not robust to different up-scale ratios and they have little concern for the per-pixel radiometric accuracy of the sharpened image. Moreover, many learning-based methods have been proposed through decades of innovations, but most of them require a large set of training pairs, which is unpractical for many real problems. To solve these problems, we firstly proposed an unsupervised Laplacian Pyramid Fusion Network (LPFNet) to generate a radiometrically-accurate high-resolution HSI. First, with the low-resolution hyperspectral image (LR-HSI) and the high-resolution multispectral image (HR-MSI), the preliminary high-resolution hyperspectral image (HR-HSI) is calculated via linear regression. Next, the high-frequency details of the preliminary HR-HSI are estimated via the subtraction between it and the CNN-generated-blurry version. By injecting the details to the output of the generative CNN with the low-resolution hyperspectral image (LR-HSI) as input, the final HR-HSI is obtained. LPFNet is designed for fusing the LR-HSI and HR-MSI covers the same Visible-Near-Infrared (VNIR) bands, while the short-wave infrared (SWIR) bands of HSI are ignored. SWIR bands are equally important to VNIR bands, but their spatial details are more challenging to be enhanced because the HR-MSI, used to provide the spatial details in the fusion process, usually has no SWIR coverage or lower-spatial-resolution SWIR. To this end, we designed an unsupervised cascade fusion network (UCFNet) to sharpen the Vis-NIR-SWIR LR-HSI. First, the preliminary high-resolution VNIR hyperspectral image (HR-VNIR-HSI) is obtained with a conventional hyperspectral algorithm. Then, the HR-MSI, the preliminary HR-VNIR-HSI, and the LR-SWIR-HSI are passed to the generative convolutional neural network to produce an HR-HSI. In the training process, the cascade sharpening method is employed to improve stability. Furthermore, the self-supervising loss is introduced based on the cascade strategy to further improve the spectral accuracy. Experiments are conducted on both LPFNet and UCFNet with different datasets and up-scale ratios. Also, state-of-the-art baseline methods are implemented and compared with the proposed methods with different quantitative metrics. Results demonstrate that proposed methods outperform the competitors in all cases in terms of spectral and spatial accuracy

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing
    corecore