3,774 research outputs found

    Interface refactoring in performance-constrained web services

    Get PDF
    This paper presents the development of REF-WS an approach to enable a Web Service provider to reliably evolve their service through the application of refactoring transformations. REF-WS is intended to aid service providers, particularly in a reliability and performance constrained domain as it permits upgraded ’non-backwards compatible’ services to be deployed into a performance constrained network where existing consumers depend on an older version of the service interface. In order for this to be successful, the refactoring and message mediation needs to occur without affecting functional compatibility with the services’ consumers, and must operate within the performance overhead expected of the original service, introducing as little latency as possible. Furthermore, compared to a manually programmed solution, the presented approach enables the service developer to apply and parameterize refactorings with a level of confidence that they will not produce an invalid or ’corrupt’ transformation of messages. This is achieved through the use of preconditions for the defined refactorings

    Engineering model transformations with transML

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007%2Fs10270-011-0211-2Model transformation is one of the pillars of model-driven engineering (MDE). The increasing complexity of systems and modelling languages has dramatically raised the complexity and size of model transformations as well. Even though many transformation languages and tools have been proposed in the last few years, most of them are directed to the implementation phase of transformation development. In this way, even though transformations should be built using sound engineering principles—just like any other kind of software—there is currently a lack of cohesive support for the other phases of the transformation development, like requirements, analysis, design and testing. In this paper, we propose a unified family of languages to cover the life cycle of transformation development enabling the engineering of transformations. Moreover, following an MDE approach, we provide tools to partially automate the progressive refinement of models between the different phases and the generation of code for several transformation implementation languages.This work has been sponsored by the Spanish Ministry of Science and Innovation with project METEORIC (TIN2008-02081), and by the R&D program of the Community of Madrid with projects “e-Madrid" (S2009/TIC-1650). Parts of this work were done during the research stays of Esther and Juan at the University of York, with financial support from the Spanish Ministry of Science and Innovation (grant refs. JC2009-00015, PR2009-0019 and PR2008-0185)

    Spectrum-Based Fault Localization in Model Transformations

    Get PDF
    Model transformations play a cornerstone role in Model-Driven Engineering (MDE), as they provide the essential mechanisms for manipulating and transforming models. The correctness of software built using MDE techniques greatly relies on the correctness of model transformations. However, it is challenging and error prone to debug them, and the situation gets more critical as the size and complexity of model transformations grow, where manual debugging is no longer possible. Spectrum-Based Fault Localization (SBFL) uses the results of test cases and their corresponding code coverage information to estimate the likelihood of each program component (e.g., statements) of being faulty. In this article we present an approach to apply SBFL for locating the faulty rules in model transformations. We evaluate the feasibility and accuracy of the approach by comparing the effectiveness of 18 different stateof- the-art SBFL techniques at locating faults in model transformations. Evaluation results revealed that the best techniques, namely Kulcynski2, Mountford, Ochiai, and Zoltar, lead the debugger to inspect a maximum of three rules to locate the bug in around 74% of the cases. Furthermore, we compare our approach with a static approach for fault localization in model transformations, observing a clear superiority of the proposed SBFL-based method.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a TIN2015-70560-RJunta de AndalucĂ­a P12-TIC-186

    Microservices and Machine Learning Algorithms for Adaptive Green Buildings

    Get PDF
    In recent years, the use of services for Open Systems development has consolidated and strengthened. Advances in the Service Science and Engineering (SSE) community, promoted by the reinforcement of Web Services and Semantic Web technologies and the presence of new Cloud computing techniques, such as the proliferation of microservices solutions, have allowed software architects to experiment and develop new ways of building open and adaptable computer systems at runtime. Home automation, intelligent buildings, robotics, graphical user interfaces are some of the social atmosphere environments suitable in which to apply certain innovative trends. This paper presents a schema for the adaptation of Dynamic Computer Systems (DCS) using interdisciplinary techniques on model-driven engineering, service engineering and soft computing. The proposal manages an orchestrated microservices schema for adapting component-based software architectural systems at runtime. This schema has been developed as a three-layer adaptive transformation process that is supported on a rule-based decision-making service implemented by means of Machine Learning (ML) algorithms. The experimental development was implemented in the Solar Energy Research Center (CIESOL) applying the proposed microservices schema for adapting home architectural atmosphere systems on Green Buildings

    On the Value of Quality Attributes for Refactoring Model Transformations Using a Multi-Objective Algorithm

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152454/1/QMOOD_for_ATL__Copy_.pd

    Extending ATL for Native UML Profile Support: An Experience Report 49-62

    Get PDF
    International audienceWith the rise of Model-driven Engineering (MDE) the ap- plication field of model transformations broadens drastically. Current model transformation languages provide appropriate support for stan- dard MDE scenarios such as model-to-model transformations specified between metamodels. However, for other transformation scenarios often the escape to predefined APIs for handling specific model manipulations is required such as is the case for supporting UML profiles in transforma- tions. Thus, the need arises to extend current transformation languages for natively supporting such additional model manipulations. In this paper we report on extending ATL for natively supporting UML profiles in transformations. The extension is realized by providing an extended ATL syntax comprising keywords for handling UML profiles which is reduced by a preprocessor based on a Higher-Order Transfor- mation (HOT) again to the standard ATL syntax. In particular, we elab- orate on our methodology of extending ATL by presenting the extension process step-by-step as well as reporting on lessons learned. With this experience report we aim at providing design guidelines for extending ATL as well as stimulating the research of providing further extensions for ATL

    Parallel Execution of ATL Transformation Rules

    Get PDF
    International audienceIndustrial environments that make use of Model-Driven Engineering (MDE) are starting to see the appearance of very large models, made by millions of elements. Such models are produced automatically (e.g., by reverse engineering complex systems) or manually by a large number of users (e.g., from social networks). The success of MDE in these application scenarios strongly depends on the scalability of model manipulation tools. While parallelization is one of the traditional ways of making computation systems scalable, developing parallel model transformations in a general-purpose language is a complex and error-prone task. In this paper we show that rule-based languages like ATL have strong parallelization properties. Transformations can be developed without taking into account concurrency concerns, and a transformation engine can automatically parallelize execution. We describe the implementation of a parallel transformation engine for the current version of the ATL language and experimentally evaluate the consequent gain in scalability

    Towards the systematic construction of domain-specific transformation languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-09195-2-13Proceedings of 10th European Conference, ECMFA 2014, Held as Part of STAF 2014, York, UK, July 21-25, 2014General-purpose transformation languages, like ATL or QVT, are the basis for model manipulation in Model-Driven Engineering (MDE). However, as MDE moves to more complex scenarios, there is the need for specialized transformation languages for activities like model merging, migration or aspect weaving, or for specific domains of wide use like UML. Such domain-specific transformation languages (DSTLs) encapsulate transformation knowledge within a language, enabling the reuse of recurrent solutions to transformation problems. Nowadays, many DSTLs are built in an ad-hoc manner, which requires a high development cost to achieve a full-featured implementation. Alternatively, they are realised by an embedding into general-purpose transformation or programming languages like ATL or Java. In this paper, we propose a framework for the systematic creation of DSTLs. First, we look into the characteristics of domain-specific transformation tools, deriving a categorization which is the basis of our framework. Then, we propose a domain-specific language to describe DSTLs, from which we derive a ready-to-run workbench which includes the abstract syntax, concrete syntax and translational semantics of the DSTL.This work has been funded by the Spanish Ministry of Economy and Competitivity with project “Go Lite” (TIN2011-24139

    XRound : A reversible template language and its application in model-based security analysis

    Get PDF
    Successful analysis of the models used in Model-Driven Development requires the ability to synthesise the results of analysis and automatically integrate these results with the models themselves. This paper presents a reversible template language called XRound which supports round-trip transformations between models and the logic used to encode system properties. A template processor that supports the language is described, and the use of the template language is illustrated by its application in an analysis workbench, designed to support analysis of security properties of UML and MOF-based models. As a result of using reversible templates, it is possible to seamlessly and automatically integrate the results of a security analysis with a model. (C) 2008 Elsevier B.V. All rights reserved
    • …
    corecore