7,157 research outputs found

    Generalization Error in Deep Learning

    Get PDF
    Deep learning models have lately shown great performance in various fields such as computer vision, speech recognition, speech translation, and natural language processing. However, alongside their state-of-the-art performance, it is still generally unclear what is the source of their generalization ability. Thus, an important question is what makes deep neural networks able to generalize well from the training set to new data. In this article, we provide an overview of the existing theory and bounds for the characterization of the generalization error of deep neural networks, combining both classical and more recent theoretical and empirical results

    Towards Robust Neural Networks via Random Self-ensemble

    Full text link
    Recent studies have revealed the vulnerability of deep neural networks: A small adversarial perturbation that is imperceptible to human can easily make a well-trained deep neural network misclassify. This makes it unsafe to apply neural networks in security-critical applications. In this paper, we propose a new defense algorithm called Random Self-Ensemble (RSE) by combining two important concepts: {\bf randomness} and {\bf ensemble}. To protect a targeted model, RSE adds random noise layers to the neural network to prevent the strong gradient-based attacks, and ensembles the prediction over random noises to stabilize the performance. We show that our algorithm is equivalent to ensemble an infinite number of noisy models fϵf_\epsilon without any additional memory overhead, and the proposed training procedure based on noisy stochastic gradient descent can ensure the ensemble model has a good predictive capability. Our algorithm significantly outperforms previous defense techniques on real data sets. For instance, on CIFAR-10 with VGG network (which has 92\% accuracy without any attack), under the strong C\&W attack within a certain distortion tolerance, the accuracy of unprotected model drops to less than 10\%, the best previous defense technique has 48%48\% accuracy, while our method still has 86%86\% prediction accuracy under the same level of attack. Finally, our method is simple and easy to integrate into any neural network.Comment: ECCV 2018 camera read
    • …
    corecore