937 research outputs found

    Optimization of bit interleaved coded modulation using genetic algorithms

    Get PDF
    Modern wireless communication systems must be optimized with respect to both bandwidth efficiency and energy efficiency. A common approach to achieve these goals is to use multi-level modulation such as quadrature-amplitude modulation (QAM) for bandwidth efficiency and an error-control code for energy efficiency. In benign additive white Gaussian noise (AWGN) channels, Ungerboeck proposed trellis-coded modulation (TCM), which combines modulation and coding into a joint operation. However, in fading channels, it is important to maximize diversity. As shown by Zehavi, diversity is maximized by performing coding and modulation separately and interleaving bits that are passed from the encoder to the modulator. Such systems are termed BICM for bit-interleaved coded modulation. Later, Li and Ritcey proposed a method for improving the performance of BICM systems by iteratively passing information between the demodulator and decoder. Such systems are termed BICM-ID , for BICM with Iterative Decoding. The bit error rate (BER) curve of a typical BICM-ID system is characterized by a steeply sloping waterfall region followed by an error floor with a gradual slope.;This thesis is focused on optimizing BICM-ID systems in the error floor region. The problem of minimizing the error bound is formulated as an instance of the Quadratic Assignment Problem (QAP) and solved using a genetic algorithm. First, an optimization is performed by fixing the modulation and varying the bit-to-symbol mapping. This approach provides the lowest possible error floor for a BICM-ID system using standard QAM and phase-shift keying (PSK) modulations. Next, the optimization is performed by varying not only the bit-to-symbol mapping, but also the location of the signal points within the two-dimensional constellation. This provides an error floor that is lower than that achieved with the best QAM and PSK systems, although at the cost of a delayed waterfall region

    Multi-objective optimisation of safety-critical hierarchical systems

    Get PDF
    Achieving high reliability, particularly in safety critical systems, is an important and often mandatory requirement. At the same time costs should be kept as low as possible. Finding an optimum balance between maximising a system's reliability and minimising its cost is a hard combinatorial problem. As the size and complexity of a system increases, so does the scale of the problem faced by the designers. To address these difficulties, meta-heuristics such as Genetic Algorithms and Tabu Search algorithms have been applied in the past for automatically determining the optimal allocation of redundancies in a system as a mechanism for optimising the reliability and cost characteristics of that system. In all cases, simple reliability block diagrams with restrictive assumptions, such as failure independence and limited 2-state failure modes, were used for evaluating the reliability of the candidate designs produced by the various algorithms.This thesis argues that a departure from this restrictive evaluation model is possible by using a new model-based reliability evaluation technique called Hierachically Performed Hazard Origin and Propagation Studies (HiP-HOPS). HiP-HOPS can overcome the limitations imposed by reliability block diagrams by providing automatic analysis of complex engineering models with multiple failure modes. The thesis demonstrates that, used as the fitness evaluating component of a multi-objective Genetic Algorithm, HiP-HOPS can be used to solve the problem of redundancy allocation effectively and with relative efficiency. Furthermore, the ability of HiP-HOPS to model and automatically analyse complex engineering models, with multiple failure modes, allows the Genetic Algorithm to potentially optimise systems using more flexible strategies, not just series-parallel. The results of this thesis show the feasibility of the approach and point to a number of directions for future work to consider

    NATURAL ALGORITHMS IN DIGITAL FILTER DESIGN

    Get PDF
    Digital filters are an important part of Digital Signal Processing (DSP), which plays vital roles within the modern world, but their design is a complex task requiring a great deal of specialised knowledge. An analysis of this design process is presented, which identifies opportunities for the application of optimisation. The Genetic Algorithm (GA) and Simulated Annealing are problem-independent and increasingly popular optimisation techniques. They do not require detailed prior knowledge of the nature of a problem, and are unaffected by a discontinuous search space, unlike traditional methods such as calculus and hill-climbing. Potential applications of these techniques to the filter design process are discussed, and presented with practical results. Investigations into the design of Frequency Sampling (FS) Finite Impulse Response (FIR) filters using a hybrid GA/hill-climber proved especially successful, improving on published results. An analysis of the search space for FS filters provided useful information on the performance of the optimisation technique. The ability of the GA to trade off a filter's performance with respect to several design criteria simultaneously, without intervention by the designer, is also investigated. Methods of simplifying the design process by using this technique are presented, together with an analysis of the difficulty of the non-linear FIR filter design problem from a GA perspective. This gave an insight into the fundamental nature of the optimisation problem, and also suggested future improvements. The results gained from these investigations allowed the framework for a potential 'intelligent' filter design system to be proposed, in which embedded expert knowledge, Artificial Intelligence techniques and traditional design methods work together. This could deliver a single tool capable of designing a wide range of filters with minimal human intervention, and of proposing solutions to incomplete problems. It could also provide the basis for the development of tools for other areas of DSP system design
    • …
    corecore