2,627 research outputs found

    A Framework for Exploring and Evaluating Mechanics in Human Computation Games

    Full text link
    Human computation games (HCGs) are a crowdsourcing approach to solving computationally-intractable tasks using games. In this paper, we describe the need for generalizable HCG design knowledge that accommodates the needs of both players and tasks. We propose a formal representation of the mechanics in HCGs, providing a structural breakdown to visualize, compare, and explore the space of HCG mechanics. We present a methodology based on small-scale design experiments using fixed tasks while varying game elements to observe effects on both the player experience and the human computation task completion. Finally we discuss applications of our framework using comparisons of prior HCGs and recent design experiments. Ultimately, we wish to enable easier exploration and development of HCGs, helping these games provide meaningful player experiences while solving difficult problems.Comment: 11 pages, 5 figure

    Generating and Adapting to Diverse Ad-Hoc Cooperation Agents in Hanabi

    Full text link
    Hanabi is a cooperative game that brings the problem of modeling other players to the forefront. In this game, coordinated groups of players can leverage pre-established conventions to great effect, but playing in an ad-hoc setting requires agents to adapt to its partner's strategies with no previous coordination. Evaluating an agent in this setting requires a diverse population of potential partners, but so far, the behavioral diversity of agents has not been considered in a systematic way. This paper proposes Quality Diversity algorithms as a promising class of algorithms to generate diverse populations for this purpose, and generates a population of diverse Hanabi agents using MAP-Elites. We also postulate that agents can benefit from a diverse population during training and implement a simple "meta-strategy" for adapting to an agent's perceived behavioral niche. We show this meta-strategy can work better than generalist strategies even outside the population it was trained with if its partner's behavioral niche can be correctly inferred, but in practice a partner's behavior depends and interferes with the meta-agent's own behavior, suggesting an avenue for future research in characterizing another agent's behavior during gameplay.Comment: arXiv admin note: text overlap with arXiv:1907.0384

    Affect and believability in game characters:a review of the use of affective computing in games

    Get PDF
    Virtual agents are important in many digital environments. Designing a character that highly engages users in terms of interaction is an intricate task constrained by many requirements. One aspect that has gained more attention recently is the effective dimension of the agent. Several studies have addressed the possibility of developing an affect-aware system for a better user experience. Particularly in games, including emotional and social features in NPCs adds depth to the characters, enriches interaction possibilities, and combined with the basic level of competence, creates a more appealing game. Design requirements for emotionally intelligent NPCs differ from general autonomous agents with the main goal being a stronger player-agent relationship as opposed to problem solving and goal assessment. Nevertheless, deploying an affective module into NPCs adds to the complexity of the architecture and constraints. In addition, using such composite NPC in games seems beyond current technology, despite some brave attempts. However, a MARPO-type modular architecture would seem a useful starting point for adding emotions

    A Mixed Method Approach for Evaluating and Improving the Design of Learning in Puzzle Games

    Get PDF
    Despite the acknowledgment that learning is a necessary part of all gameplay, the area of Games User Research lacks an established evidence based method through which designers and researchers can understand, assess, and improve how commercial games teach players game-specific skills and information. In this paper, we propose a mixed method procedure that draws together both quantitative and experiential approaches to examine the extent to which players are supported in learning about the game world and mechanics. We demonstrate the method through presenting a case study of the game Portal involving 14 participants, who differed in terms of their gaming expertise. By comparing optimum solutions to puzzles against observed player performance, we illustrate how the method can indicate particular problems with how learning is structured within a game. We argue that the method can highlight where major breakdowns occur and yield design insights that can improve the player experience with puzzle games

    A rhythm-based game for stroke rehabilitation

    Get PDF

    Full-body motion-based game interaction for older adults

    Get PDF
    Older adults in nursing homes often lead sedentary lifestyles, which reduces their life expectancy. Full-body motion-control games provide an opportunity for these adults to remain active and engaged; these games are not designed with age-related impairments in mind, which prevents the games from being leveraged to increase the activity levels of older adults. In this paper, we present two studies aimed at developing game design guidelines for full-body motion controls for older adults experiencing age-related changes and impairments. Our studies also demonstrate how full-body motion-control games can accommodate a variety of user abilities, have a positive effect on mood and, by extension, the emotional well-being of older adults. Based on our studies, we present seven guidelines for the design of full-body interaction in games. The guidelines are designed to foster safe physical activity among older adults, thereby increasing their quality of life. Copyright 2012 ACM

    The use of deep learning to improve player engagement in a video game through a dynamic difficulty adjustment based on skills classification

    Get PDF
    The balance between game difficulty and player skill in the evolving landscape of the video game industry is a significant factor in player engagement. This study introduces a deep learning (DL) approach to enhance gameplay by dynamically adjusting game difficulty based on a player’s skill level. Our methodology aims to prevent player disengagement, which can occur if the game difficulty significantly exceeds or falls short of the player’s skill level. Our evaluation indicates that such dynamic adjustment leads to improved gameplay and increased player involvement, with 90% of the players reporting high game enjoyment and immersion levels
    • …
    corecore