7,433 research outputs found

    Strategies for the characteristic extraction of gravitational waveforms

    Get PDF
    We develop, test, and compare new numerical and geometrical methods for improving the accuracy of extracting waveforms using characteristic evolution. The new numerical method involves use of circular boundaries to the stereographic grid patches which cover the spherical cross sections of the outgoing null cones. We show how an angular version of numerical dissipation can be introduced into the characteristic code to damp the high frequency error arising form the irregular way the circular patch boundary cuts through the grid. The new geometric method involves use of the Weyl tensor component Psi4 to extract the waveform as opposed to the original approach via the Bondi news function. We develop the necessary analytic and computational formula to compute the O(1/r) radiative part of Psi4 in terms of a conformally compactified treatment of null infinity. These methods are compared and calibrated in test problems based upon linearized waves

    A fast and exact ww-stacking and ww-projection hybrid algorithm for wide-field interferometric imaging

    Get PDF
    The standard wide-field imaging technique, the ww-projection, allows correction for wide-fields of view for non-coplanar radio interferometric arrays. However, calculating exact corrections for each measurement has not been possible due to the amount of computation required at high resolution and with the large number of visibilities from current interferometers. The required accuracy and computational cost of these corrections is one of the largest unsolved challenges facing next generation radio interferometers such as the Square Kilometre Array. We show that the same calculation can be performed with a radially symmetric ww-projection kernel, where we use one dimensional adaptive quadrature to calculate the resulting Hankel transform, decreasing the computation required for kernel generation by several orders of magnitude, whilst preserving the accuracy. We confirm that the radial ww-projection kernel is accurate to approximately 1% by imaging the zero-spacing with an added ww-term. We demonstrate the potential of our radially symmetric ww-projection kernel via sparse image reconstruction, using the software package PURIFY. We develop a distributed ww-stacking and ww-projection hybrid algorithm. We apply this algorithm to individually correct for non-coplanar effects in 17.5 million visibilities over a 2525 by 2525 degree field of view MWA observation for image reconstruction. Such a level of accuracy and scalability is not possible with standard ww-projection kernel generation methods. This demonstrates that we can scale to a large number of measurements with large image sizes whilst still maintaining both speed and accuracy.Comment: 9 Figures, 19 Pages. Accepted to Ap

    Virtual image out-the-window display system study. Volume 2 - Appendix

    Get PDF
    Virtual image out-the-window display system imaging techniques and simulation devices - appendices containing background materia

    The Life and Times of the Parkes-Tidbinbilla Interferometer

    Full text link
    The Parkes-Tidbinbilla took advantage of a real-time radio-link connecting the Parkes and Tidbinbilla antennas to form the world's longest real-time interferometer. Built on a minuscule budget, it was an extraordinarily successful instrument, generating some 24 journal papers including 3 Nature papers, as well as facilitating the early development of the Australia Telescope Compact Array. Here we describe its origins, construction, successes, and life cycle, and discuss the future use of single-baseline interferometers in the era of SKA and its pathfinders.Comment: Accepted by Journal of Astronomical History & Heritage. arXiv admin note: substantial text overlap with arXiv:1210.098

    Present state of knowledge of the upper atmosphere: An assessment report; processes that control ozone and other climatically important trace gases

    Get PDF
    The state of knowledge of the upper atmosphere was assessed as of January 1986. The physical, chemical, and radiative processes which control the spatial and temporal distribution of ozone in the atmosphere; the predicted magnitude of ozone perturbations and climate changes for a variety of trace gas scenarios; and the ozone and temperature data used to detect the presence or absence of a long term trend were discussed. This assessment report was written by a small group of NASA scientists, was peer reviewed, and is based primarily on the comprehensive international assessment document entitled Atmospheric Ozone 1985: Assessment of Our Understanding of the Processes Controlling Its Present Distribution and Change, to be published as the World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 16

    Intraocular Forced Convection Mechanism Defect as Probable Cause of Normal-Tension Glaucoma

    Get PDF
    This paper describes several pathologies associated with pathological movements that can cause physical effort on the optic nerve and damage to vision. The accumulation of intraocular metabolic residues increases ocular globe mass and can change its position in the orbit, as well as increase the cornea and crystalline, accommodation resistance, in addition to being able to increase the aqueous humor output resistance. A series of discreet pathologies may result in optic nerve impairment: cyclotorsion and saccadic movement, position in the orbit, and increased intraocular pressure. The cyclotorsion movements can be stimulated by the superior visual field restriction, due to the metabolic residue accumulation in the light transmission regions of this visual field, preventing correct fusion of the images

    Unsupervised Behaviour Analysis and Magnification (uBAM) using Deep Learning

    Full text link
    Motor behaviour analysis is essential to biomedical research and clinical diagnostics as it provides a non-invasive strategy for identifying motor impairment and its change caused by interventions. State-of-the-art instrumented movement analysis is time- and cost-intensive, since it requires placing physical or virtual markers. Besides the effort required for marking keypoints or annotations necessary for training or finetuning a detector, users need to know the interesting behaviour beforehand to provide meaningful keypoints. We introduce unsupervised behaviour analysis and magnification (uBAM), an automatic deep learning algorithm for analysing behaviour by discovering and magnifying deviations. A central aspect is unsupervised learning of posture and behaviour representations to enable an objective comparison of movement. Besides discovering and quantifying deviations in behaviour, we also propose a generative model for visually magnifying subtle behaviour differences directly in a video without requiring a detour via keypoints or annotations. Essential for this magnification of deviations even across different individuals is a disentangling of appearance and behaviour. Evaluations on rodents and human patients with neurological diseases demonstrate the wide applicability of our approach. Moreover, combining optogenetic stimulation with our unsupervised behaviour analysis shows its suitability as a non-invasive diagnostic tool correlating function to brain plasticity.Comment: Published in Nature Machine Intelligence (2021), https://rdcu.be/ch6p
    • …
    corecore