42 research outputs found

    Asynchronous techniques for new generation variation-tolerant FPGA

    Get PDF
    PhD ThesisThis thesis presents a practical scenario for asynchronous logic implementation that would benefit the modern Field-Programmable Gate Arrays (FPGAs) technology in improving reliability. A method based on Asynchronously-Assisted Logic (AAL) blocks is proposed here in order to provide the right degree of variation tolerance, preserve as much of the traditional FPGAs structure as possible, and make use of asynchrony only when necessary or beneficial for functionality. The newly proposed AAL introduces extra underlying hard-blocks that support asynchronous interaction only when needed and at minimum overhead. This has the potential to avoid the obstacles to the progress of asynchronous designs, particularly in terms of area and power overheads. The proposed approach provides a solution that is complementary to existing variation tolerance techniques such as the late-binding technique, but improves the reliability of the system as well as reducing the design’s margin headroom when implemented on programmable logic devices (PLDs) or FPGAs. The proposed method suggests the deployment of configurable AAL blocks to reinforce only the variation-critical paths (VCPs) with the help of variation maps, rather than re-mapping and re-routing. The layout level results for this method's worst case increase in the CLB’s overall size only of 6.3%. The proposed strategy retains the structure of the global interconnect resources that occupy the lion’s share of the modern FPGA’s soft fabric, and yet permits the dual-rail iv completion-detection (DR-CD) protocol without the need to globally double the interconnect resources. Simulation results of global and interconnect voltage variations demonstrate the robustness of the method

    Railway defect detection method: A review

    Get PDF
    The railway is indeed one of the main transportations means in the world. However, with the rapid development and advancement of the railway industries, more railways accidents occur mainly due to its defects which result in economic losses. Traditionally, the railway defect detections process which is deems to be dirty, difficult and dangerous are done manually by the railway maintenance workers. In the recent years, many sophisticated equipment such as portable detectors, track inspection trolleys, track comprehensive inspection vehicles, etc had been developed. This article outlines two main mode of inspection namely static and dynamic inspection, which are commonly used in the railway defect detection and maintenance work. Furthermore, the railway inspection equipment used by the major countries are summarized and the impact on railway inspection based on deep learning and artificial intelligence are appropriately predicted

    Neural networks-on-chip for hybrid bio-electronic systems

    Get PDF
    PhD ThesisBy modelling the brains computation we can further our understanding of its function and develop novel treatments for neurological disorders. The brain is incredibly powerful and energy e cient, but its computation does not t well with the traditional computer architecture developed over the previous 70 years. Therefore, there is growing research focus in developing alternative computing technologies to enhance our neural modelling capability, with the expectation that the technology in itself will also bene t from increased awareness of neural computational paradigms. This thesis focuses upon developing a methodology to study the design of neural computing systems, with an emphasis on studying systems suitable for biomedical experiments. The methodology allows for the design to be optimized according to the application. For example, di erent case studies highlight how to reduce energy consumption, reduce silicon area, or to increase network throughput. High performance processing cores are presented for both Hodgkin-Huxley and Izhikevich neurons incorporating novel design features. Further, a complete energy/area model for a neural-network-on-chip is derived, which is used in two exemplar case-studies: a cortical neural circuit to benchmark typical system performance, illustrating how a 65,000 neuron network could be processed in real-time within a 100mW power budget; and a scalable highperformance processing platform for a cerebellar neural prosthesis. From these case-studies, the contribution of network granularity towards optimal neural-network-on-chip performance is explored

    Variation-aware high-level DSP circuit design optimisation framework for FPGAs

    Get PDF
    The constant technology shrinking and the increasing demand for systems that operate under different power profiles with the maximum performance, have motivated the work in this thesis. Modern design tools that target FPGA devices take a conservative approach in the estimation of the maximum performance that can be achieved by a design when it is placed on a device, accounting for any variability in the fabrication process of the device. The work presented here takes a new view on the performance improvement of DSP designs by pushing them into the error-prone regime, as defined by the synthesis tools, and by investigating methodologies that reduce the impact of timing errors at the output of the system. In this work two novel error reduction techniques are proposed to address this problem. One is based on reduced-precision redundancy and the other on an error optimisation framework that uses information from a prior characterisation of the device. The first one is a generic architecture that is appended to existing arithmetic operators. The second defines the high-level parameters of the algorithm without using extra resources. Both of these methods allow to achieve graceful degradation whilst variation increases. A comparison of the new methods is laid against the existing methodologies, and conclusions drawn on the tradeoffs between their cost, in terms of resources and errors, and their benefits in terms of throughput. In some cases it is possible to double the performance of the design while still producing valid results.Open Acces

    Delay Measurements and Self Characterisation on FPGAs

    No full text
    This thesis examines new timing measurement methods for self delay characterisation of Field-Programmable Gate Arrays (FPGAs) components and delay measurement of complex circuits on FPGAs. Two novel measurement techniques based on analysis of a circuit's output failure rate and transition probability is proposed for accurate, precise and efficient measurement of propagation delays. The transition probability based method is especially attractive, since it requires no modifications in the circuit-under-test and requires little hardware resources, making it an ideal method for physical delay analysis of FPGA circuits. The relentless advancements in process technology has led to smaller and denser transistors in integrated circuits. While FPGA users benefit from this in terms of increased hardware resources for more complex designs, the actual productivity with FPGA in terms of timing performance (operating frequency, latency and throughput) has lagged behind the potential improvements from the improved technology due to delay variability in FPGA components and the inaccuracy of timing models used in FPGA timing analysis. The ability to measure delay of any arbitrary circuit on FPGA offers many opportunities for on-chip characterisation and physical timing analysis, allowing delay variability to be accurately tracked and variation-aware optimisations to be developed, reducing the productivity gap observed in today's FPGA designs. The measurement techniques are developed into complete self measurement and characterisation platforms in this thesis, demonstrating their practical uses in actual FPGA hardware for cross-chip delay characterisation and accurate delay measurement of both complex combinatorial and sequential circuits, further reinforcing their positions in solving the delay variability problem in FPGAs
    corecore