2,579 research outputs found

    Novel Satellite-Based Methodologies for Multi-Sensor and Multi-Scale Environmental Monitoring to Preserve Natural Capital

    Get PDF
    Global warming, as the biggest manifestation of climate change, has changed the distribution of water in the hydrological cycle by increasing the evapotranspiration rate resulting in anthropogenic and natural hazards adversely affecting modern and past human properties and heritage in different parts of the world. The comprehension of environmental issues is critical for ensuring our existence on Earth and environmental sustainability. Environmental modeling can be described as a simplified form of a real system that enhances our knowledge of how a system operates. Such models represent the functioning of various processes of the environment, such as processes related to the atmosphere, hydrology, land surface, and vegetation. The environmental models can be applied on a wide range of spatiotemporal scales (i.e. from local to global and from daily to decadal levels); and they can employ various types of models (e.g. process-driven, empirical or data-driven, deterministic, stochastic, etc.). Satellite remote sensing and Earth Observation techniques can be utilized as a powerful tool for flood mapping and monitoring. By increasing the number of satellites orbiting around the Earth, the spatial and temporal coverage of environmental phenomenon on the planet has in-creased. However, handling such a massive amount of data was a challenge for researchers in terms of data curation and pre-processing as well as required computational power. The advent of cloud computing platforms has eliminated such steps and created a great opportunity for rapid response to environmental crises. The purpose of this study was to gather state-of-the-art remote sensing and/or earth observation techniques and to further the knowledge concerned with any aspect of the use of remote sensing and/or big data in the field of geospatial analysis. In order to achieve the goals of this study, some of the water-related climate-change phenomena were studied via different mathematical, statistical, geomorphological and physical models using different satellite and in-situ data on different centralized and decentralized computational platforms. The structure of this study was divided into three chapters with their own materials, methodologies and results including: (1) flood monitoring; (2) soil water balance modeling; and (3) vegetation monitoring. The results of this part of the study can be summarize in: 1) presenting innovative procedures for fast and semi-automatic flood mapping and monitoring based on geomorphic methods, change detection techniques and remote sensing data; 2) modeling soil moisture and water balance components in the root zone layer using in-situ, drone and satellite data; incorporating downscaling techniques; 3) combining statistical methods with the remote sensing data for detecting inner anomalies in the vegetation covers such as pest emergence; 4) stablishing and disseminating the use of cloud computation platforms such as Google Earth Engine in order to eliminate the unnecessary steps for data curation and pre-processing as well as required computational power to handle the massive amount of RS data. As a conclusion, this study resulted in provision of useful information and methodologies for setting up strategies to mitigate damage and support the preservation of areas and landscape rich in cultural and natural heritage

    Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks

    Get PDF
    Many crop production management decisions can be informed using data from high-resolution aerial images that provide information about crop health as influenced by soil fertility and moisture. Surface soil moisture is a key component of soil water balance, which addresses water and energy exchanges at the surface/atmosphere interface; however, high-resolution remotely sensed data is rarely used to acquire soil moisture values. In this study, an artificial neural network (ANN) model was developed to quantify the effectiveness of using spectral images to estimate surface soil moisture. The model produces acceptable estimations of surface soil moisture (root mean square error (RMSE) = 2.0, mean absolute error (MAE) = 1.8, coefficient of correlation (r) = 0.88, coefficient of performance (e) = 0.75 and coefficient of determination (R2) = 0.77) by combining field measurements with inexpensive and readily available remotely sensed inputs. The spatial data (visual spectrum, near infrared, infrared/thermal) are produced by the AggieAir™ platform, which includes an unmanned aerial vehicle (UAV) that enables users to gather aerial imagery at a low price and high spatial and temporal resolutions. This study reports the development of an ANN model that translates AggieAir™ imagery into estimates of surface soil moisture for a large field irrigated by a center pivot sprinkler system

    Use of soil moisture information in yield models

    Get PDF
    There are no author-identified significant results in this report

    Disaggregation of SMOS soil moisture over West Africa using the Temperature and Vegetation Dryness Index based on SEVIRI land surface parameters

    Get PDF
    The overarching objective of this study was to produce a disaggregated SMOS Soil Moisture (SM) product using land surface parameters from a geostationary satellite in a region covering a diverse range of ecosystem types. SEVIRI data at 15 minute temporal resolution were used to derive the Temperature and Vegetation Dryness Index (TVDI) that served as SM proxy within the disaggregation process. West Africa (3 N, 26 W; 28 N, 26 E) was selected as a case study as it presents both an important North-South climate gradient and a diverse range of ecosystem types. The main challenge was to set up a methodology applicable over a large area that overcomes the constraints of SMOS (low spatial resolution) and TVDI (requires similar atmospheric forcing and triangular shape formed when plotting morning rise temperature versus fraction of vegetation cover) in order to produce a 0.05 degree resolution disaggregated SMOS SM product at sub-continental scale. Consistent cloud cover appeared as one of the main constraints for deriving TVDI, especially during the rainy season and in the southern parts of the region and a large adjustment window (105x105 SEVIRI pixels) was therefore deemed necessary. Both the original and the disaggregated SMOS SM products described well the seasonal dynamics observed at six locations of in situ observations. However, there was an overestimation in both products for sites in the humid southern regions; most likely caused by the presence of forest. Both TVDI and the associated disaggregated SM product was found to be highly sensitive to algorithm input parameters; especially of conditions of high fraction of vegetation cover. Additionally, seasonal dynamics in TVDI did not follow the seasonal patters of SM. Still, its spatial heterogeneity was found to be a good proxy for disaggregating SMOS SM data; main river networks and spatial patterns of SM extremes (i.e. droughts and floods) not seen in the original SMOS SM product were revealed in the disaggregated SM product for a test case of July-September 2012. The disaggregation methodology thereby successfully increased the spatial resolution of SMOS SM, with potential application for local drought/flood monitoring of importance for the livelihood of the population of West Africa

    Quarterly literature review of the remote sensing of natural resources

    Get PDF
    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports

    Désagrégation de l'humidité du sol issue des produits satellitaires micro-ondes passives et exploration de son utilisation pour l'amélioration de la modélisation et la prévision hydrologique

    Get PDF
    De plus en plus de produits satellitaires en micro-ondes passives sont disponibles. Cependant, leur large résolution spatiale (25-50 km) n’en font pas un outil adéquat pour des applications hydrologiques à une échelle locale telles que la modélisation et la prévision hydrologiques. Dans de nombreuses études, une désagrégation d’échelle de l’humidité du sol des produits satellites micro-ondes est faite puis validée avec des mesures in-situ. Toutefois, l’utilisation de ces données issues d’une désagrégation d’échelle n’a pas encore été pleinement étudiée pour des applications en hydrologie. Ainsi, l’objectif de cette thèse est de proposer une méthode de désagrégation d’échelle de l’humidité du sol issue de données satellitaires en micro-ondes passives (Satellite Passive Microwave Active and Passive - SMAP) à différentes résolutions spatiales afin d’évaluer leur apport sur l’amélioration potentielle des modélisations et prévisions hydrologiques. À partir d’un modèle de forêt aléatoire, une désagrégation d’échelle de l’humidité du sol de SMAP l’amène de 36-km de résolution initialement à des produits finaux à 9-, 3- et 1-km de résolution. Les prédicteurs utilisés sont à haute résolution spatiale et de sources différentes telles que Sentinel-1A, MODIS et SRTM. L'humidité du sol issue de cette désagrégation d’échelle est ensuite assimilée dans un modèle hydrologique distribué à base physique pour tenter d’améliorer les sorties de débit. Ces expériences sont menées sur les bassins versants des rivières Susquehanna (de grande taille) et Upper-Susquehanna (en comparaison de petite taille), tous deux situés aux États-Unis. De plus, le modèle assimile aussi des données d’humidité du sol en profondeur issue d’une extrapolation verticale des données SMAP. Par ailleurs, les données d’humidité du sol SMAP et les mesures in-situ sont combinées par la technique de fusion conditionnelle. Ce produit de fusion SMAP/in-situ est assimilé dans le modèle hydrologique pour tenter d’améliorer la prévision hydrologique sur le bassin versant Au Saumon situé au Québec. Les résultats montrent que l'utilisation de l’humidité du sol à fine résolution spatiale issue de la désagrégation d’échelle améliore la représentation de la variabilité spatiale de l’humidité du sol. En effet, le produit à 1- km de résolution fournit plus de détails que les produits à 3- et 9-km ou que le produit SMAP de base à 36-km de résolution. De même, l’utilisation du produit de fusion SMAP/ in-situ améliore la qualité et la représentation spatiale de l’humidité du sol. Sur le bassin versant Susquehanna, la modélisation hydrologique s’améliore avec l’assimilation du produit de désagrégation d’échelle à 9-km, sans avoir recours à des résolutions plus fines. En revanche, sur le bassin versant Upper-Susquehanna, c’est le produit avec la résolution spatiale la plus fine à 1- km qui offre les meilleurs résultats de modélisation hydrologique. L’assimilation de l’humidité du sol en profondeur issue de l’extrapolation verticale des données SMAP n’améliore que peu la qualité du modèle hydrologique. Par contre, l’assimilation du produit de fusion SMAP/in-situ sur le bassin versant Au Saumon améliore la qualité de la prévision du débit, même si celle-ci n’est pas très significative.Abstract: The availability of satellite passive microwave soil moisture is increasing, yet its spatial resolution (i.e., 25-50 km) is too coarse to use for local scale hydrological applications such as streamflow simulation and forecasting. Many studies have attempted to downscale satellite passive microwave soil moisture products for their validation with in-situ soil moisture measurements. However, their use for hydrological applications has not yet been fully explored. Thus, the objective of this thesis is to downscale the satellite passive microwave soil moisture (i.e., Satellite Microwave Active and Passive - SMAP) to a range of spatial resolutions and explore its value in improving streamflow simulation and forecasting. The random forest machine learning technique was used to downscale the SMAP soil moisture from 36-km to 9-, 3- and 1-km spatial resolutions. A combination of host of high-resolution predictors derived from different sources including Sentinel-1A, MODIS and SRTM were used for downscaling. The downscaled SMAP soil moisture was then assimilated into a physically-based distributed hydrological model for improving streamflow simulation for Susquehanna (larger in size) and Upper Susquehanna (relatively smaller in size) watersheds, located in the United States. In addition, the vertically extrapolated SMAP soil moisture was assimilated into the model. On the other hand, the SMAP and in-situ soil moisture were merged using the conditional merging technique and the merged SMAP/in-situ soil moisture was then assimilated into the model to improve streamflow forecast over the au Saumon watershed. The results show that the downscaling improved the spatial variability of soil moisture. Indeed, the 1-km downscaled SMAP soil moisture presented a higher spatial detail of soil moisture than the 3-, 9- or original resolution (36-km) SMAP product. Similarly, the merging of SMAP and in-situ soil moisture improved the accuracy as well as spatial representation soil moisture. Interestingly, the assimilation of the 9-km downscaled SMAP soil moisture significantly improved the accuracy of streamflow simulation for the Susquehanna watershed without the need of going to higher spatial resolution, whereas for the Upper Susquehanna watershed the 1-km downscaled SMAP showed better results than the coarser resolutions. The assimilation of vertically extrapolated SMAP soil moisture only slightly further improved the accuracy of the streamflow simulation. On the other hand, the assimilation of merged SMAP/in-situ soil moisture for the au Saumon watershed improved the accuracy of streamflow forecast, yet the improvement was not that significant. Overall, this study demonstrated the potential of satellite passive microwave soil moisture for streamflow simulation and forecasting
    • …
    corecore