613 research outputs found

    A low-power cache system for high-performance processors

    Get PDF
    制度:新 ; 報告番号:甲3439号 ; 学位の種類:博士(工学) ; 授与年月日:12-Sep-11 ; 早大学位記番号:新576

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Exploring manycore architectures for next-generation HPC systems through the MANGO approach

    Full text link
    [EN] The Horizon 2020 MANGO project aims at exploring deeply heterogeneous accelerators for use in High-Performance Computing systems running multiple applications with different Quality of Service (QoS) levels. The main goal of the project is to exploit customization to adapt computing resources to reach the desired QoS. For this purpose, it explores different but interrelated mechanisms across the architecture and system software. In particular, in this paper we focus on the runtime resource management, the thermal management, and support provided for parallel programming, as well as introducing three applications on which the project foreground will be validated.This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 671668.Flich Cardo, J.; Agosta, G.; Ampletzer, P.; Atienza-Alonso, D.; Brandolese, C.; Cappe, E.; Cilardo, A.... (2018). Exploring manycore architectures for next-generation HPC systems through the MANGO approach. Microprocessors and Microsystems. 61:154-170. https://doi.org/10.1016/j.micpro.2018.05.011S1541706

    Array-specific dataflow caches for high-level synthesis of memory-intensive algorithms on FPGAs

    Get PDF
    Designs implemented on field-programmable gate arrays (FPGAs) via high-level synthesis (HLS) suffer from off-chip memory latency and bandwidth bottlenecks. FPGAs can access both large but slow off-chip memories (DRAM), and fast but small on-chip memories (block RAMs and registers). HLS tools allow exploiting the memory hierarchy in a scratchpad-like fashion, requring a significant manual effort. We propose an automation of the FPGA memory management in Xilinx Vitis HLS through a fully- configurable C++ source-level cache. Each DRAM-mapped array can be associated with a private level 2 (L2) cache with one or more ports, and each port can optionally provide level 1 cache. The L2 cache runs in a separate dataflow task with respect to the application accessing it. This solution isolates off-chip memory accesses and data buffering into dedicated dataflow tasks, resembling the load, compute, store design paradigm, but without the drawback of manual algorithm refactoring. Experimental results collected from FPGA board show that our cache speeds up the execution of a variety of benchmarks by up to 60 times compared to the out-of-the-box solution provided by HLS, requiring very limited optimization effort. Our caches are not meant to compete with manually optimized implementations quality of results (QoR), but rather to significantly save design effort, in exchange for some QoR, to make the HLS flow a bit more software-like, allowing the designer to focus on algorithmic optimizations, rather than on explicit memory management. Moreover, caching could be the only feasible memory optimization for algorithms with data-dependent or irregular memory access patterns, but with good data locality

    POWER AND PERFORMANCE STUDIES OF THE EXPLICIT MULTI-THREADING (XMT) ARCHITECTURE

    Get PDF
    Power and thermal constraints gained critical importance in the design of microprocessors over the past decade. Chipmakers failed to keep power at bay while sustaining the performance growth of serial computers at the rate expected by consumers. As an alternative, they turned to fitting an increasing number of simpler cores on a single die. While this is a step forward for relaxing the constraints, the issue of power is far from resolved and it is joined by new challenges which we explain next. As we move into the era of many-cores, processors consisting of 100s, even 1000s of cores, single-task parallelism is the natural path for building faster general-purpose computers. Alas, the introduction of parallelism to the mainstream general-purpose domain brings another long elusive problem to focus: ease of parallel programming. The result is the dual challenge where power efficiency and ease-of-programming are vital for the prevalence of up and coming many-core architectures. The observations above led to the lead goal of this dissertation: a first order validation of the claim that even under power/thermal constraints, ease-of-programming and competitive performance need not be conflicting objectives for a massively-parallel general-purpose processor. As our platform, we choose the eXplicit Multi-Threading (XMT) many-core architecture for fine grained parallel programs developed at the University of Maryland. We hope that our findings will be a trailblazer for future commercial products. XMT scales up to thousand or more lightweight cores and aims at improving single task execution time while making the task for the programmer as easy as possible. Performance advantages and ease-of-programming of XMT have been shown in a number of publications, including a study that we present in this dissertation. Feasibility of the hardware concept has been exhibited via FPGA and ASIC (per our partial involvement) prototypes. Our contributions target the study of power and thermal envelopes of an envisioned 1024-core XMT chip (XMT1024) under programs that exist in popular parallel benchmark suites. First, we compare XMT against an area and power equivalent commercial high-end many-core GPU. We demonstrate that XMT can provide an average speedup of 8.8x in irregular parallel programs that are common and important in general purpose computing. Even under the worst-case power estimation assumptions for XMT, average speedup is only reduced by half. We further this study by experimentally evaluating the performance advantages of Dynamic Thermal Management (DTM), when applied to XMT1024. DTM techniques are frequently used in current single and multi-core processors, however until now their effects on single-tasked many-cores have not been examined in detail. It is our purpose to explore how existing techniques can be tailored for XMT to improve performance. Performance improvements up to 46% over a generic global management technique has been demonstrated. The insights we provide can guide designers of other similar many-core architectures. A significant infrastructure contribution of this dissertation is a highly configurable cycle-accurate simulator, XMTSim. To our knowledge, XMTSim is currently the only publicly-available shared-memory many-core simulator with extensive capabilities for estimating power and temperature, as well as evaluating dynamic power and thermal management algorithms. As a major component of the XMT programming toolchain, it is not only used as the infrastructure in this work but also contributed to other publications and dissertations

    The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology

    Get PDF
    The open-source RISC-V instruction set architecture (ISA) is gaining traction, both in industry and academia. The ISA is designed to scale from microcontrollers to server-class processors. Furthermore, openness promotes the availability of various open-source and commercial implementations. Our main contribution in this paper is a thorough power, performance, and efficiency analysis of the RISC-V ISA targeting baseline "application class" functionality, i.e., supporting the Linux OS and its application environment based on our open-source single-issue in-order implementation of the 64-bit ISA variant (RV64GC) called Ariane. Our analysis is based on a detailed power and efficiency analysis of the RISC-V ISA extracted from silicon measurements and calibrated simulation of an Ariane instance (RV64IMC) taped-out in GlobalFoundries 22FDX technology. Ariane runs at up to 1.7-GHz, achieves up to 40-Gop/sW energy efficiency, which is superior to similar cores presented in the literature. We provide insight into the interplay between functionality required for the application-class execution (e.g., virtual memory, caches, and multiple modes of privileged operation) and energy cost. We also compare Ariane with RISCY, a simpler and a slower microcontroller-class core. Our analysis confirms that supporting application-class execution implies a nonnegligible energy-efficiency loss and that compute performance is more cost-effectively boosted by instruction extensions (e.g., packed SIMD) rather than the high-frequency operation
    corecore