49,689 research outputs found

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    A Non-blocking Buddy System for Scalable Memory Allocation on Multi-core Machines

    Get PDF
    Common implementations of core memory allocation components handle concurrent allocation/release requests by synchronizing threads via spin-locks. This approach is not prone to scale with large thread counts, a problem that has been addressed in the literature by introducing layered allocation services or replicating the core allocators - the bottom most ones within the layered architecture. Both these solutions tend to reduce the pressure of actual concurrent accesses to each individual core allocator. In this article we explore an alternative approach to scalability of memory allocation/release, which can be still combined with those literature proposals. We present a fully non-blocking buddy-system, that allows threads to proceed in parallel, and commit their allocations/releases unless a conflict is materialized while handling its metadata. Beyond improving scalability and performance it is resilient to performance degradation in face of concurrent accesses independently of the current level of fragmentation of the handled memory blocks

    Cache Equalizer: A Cache Pressure Aware Block Placement Scheme for Large-Scale Chip Multiprocessors

    Get PDF
    This paper describes Cache Equalizer (CE), a novel distributed cache management scheme for large scale chip multiprocessors (CMPs). Our work is motivated by large asymmetry in cache sets usages. CE decouples the physical locations of cache blocks from their addresses for the sake of reducing misses caused by destructive interferences. Temporal pressure at the on-chip last-level cache, is continuously collected at a group (comprised of cache sets) granularity, and periodically recorded at the memory controller to guide the placement process. An incoming block is consequently placed at a cache group that exhibits the minimum pressure. CE provides Quality of Service (QoS) by robustly offering better performance than the baseline shared NUCA cache. Simulation results using a full-system simulator demonstrate that CE outperforms shared NUCA caches by an average of 15.5% and by as much as 28.5% for the benchmark programs we examined. Furthermore, evaluations manifested the outperformance of CE versus related CMP cache designs

    NBBS: A Non-blocking Buddy System for Multi-core Machines

    Get PDF
    Common implementations of core memory allocation components, like the Linux buddy system, handle concurrent allocation/release requests by synchronizing threads via spinlocks. This approach is not prone to scale with large thread counts, a problem that has been addressed in the literature by introducing layered allocation services or replicating the core allocators—the bottom most ones within the layered architecture. Both these solutions tend to reduce the pressure of actual concurrent accesses to each individual core allocator. In this article we explore an alternative approach to scalability of memory allocation/release, which can be still combined with those literature proposals. We present a fully non-blocking buddy-system, where threads performing concurrent allocations/releases do not undergo any spinlock based synchronization. Our solution allows threads to proceed in parallel, and commit their allocations/releases unless a conflict is materialized while handling its metadata. Conflict detection relies on conventional atomic machine instructions in the Read-Modify-Write (RMW) class. Beyond improving scalability and performance, our solution can also avoid wasting clock cycles for spin-lock operations by threads that could in principle carry out their memory allocation/release in full concurrency. Thus, it is resilient to performance degradation—in face of concurrent accesses—independently of the current level of fragmentation of the handled memory blocks

    MARACAS: a real-time multicore VCPU scheduling framework

    Full text link
    This paper describes a multicore scheduling and load-balancing framework called MARACAS, to address shared cache and memory bus contention. It builds upon prior work centered around the concept of virtual CPU (VCPU) scheduling. Threads are associated with VCPUs that have periodically replenished time budgets. VCPUs are guaranteed to receive their periodic budgets even if they are migrated between cores. A load balancing algorithm ensures VCPUs are mapped to cores to fairly distribute surplus CPU cycles, after ensuring VCPU timing guarantees. MARACAS uses surplus cycles to throttle the execution of threads running on specific cores when memory contention exceeds a certain threshold. This enables threads on other cores to make better progress without interference from co-runners. Our scheduling framework features a novel memory-aware scheduling approach that uses performance counters to derive an average memory request latency. We show that latency-based memory throttling is more effective than rate-based memory access control in reducing bus contention. MARACAS also supports cache-aware scheduling and migration using page recoloring to improve performance isolation amongst VCPUs. Experiments show how MARACAS reduces multicore resource contention, leading to improved task progress.http://www.cs.bu.edu/fac/richwest/papers/rtss_2016.pdfAccepted manuscrip
    • …
    corecore