458 research outputs found

    G3AN: Disentangling Appearance and Motion for Video Generation

    Get PDF
    Creating realistic human videos entails the challenge of being able to simultaneously generate both appearance, as well as motion. To tackle this challenge, we introduce G3^{3}AN, a novel spatio-temporal generative model, which seeks to capture the distribution of high dimensional video data and to model appearance and motion in disentangled manner. The latter is achieved by decomposing appearance and motion in a three-stream Generator, where the main stream aims to model spatio-temporal consistency, whereas the two auxiliary streams augment the main stream with multi-scale appearance and motion features, respectively. An extensive quantitative and qualitative analysis shows that our model systematically and significantly outperforms state-of-the-art methods on the facial expression datasets MUG and UvA-NEMO, as well as the Weizmann and UCF101 datasets on human action. Additional analysis on the learned latent representations confirms the successful decomposition of appearance and motion. Source code and pre-trained models are publicly available.Comment: CVPR 2020, project link https://wyhsirius.github.io/G3AN

    Reinforced Disentanglement for Face Swapping without Skip Connection

    Full text link
    The SOTA face swap models still suffer the problem of either target identity (i.e., shape) being leaked or the target non-identity attributes (i.e., background, hair) failing to be fully preserved in the final results. We show that this insufficient disentanglement is caused by two flawed designs that were commonly adopted in prior models: (1) counting on only one compressed encoder to represent both the semantic-level non-identity facial attributes(i.e., pose) and the pixel-level non-facial region details, which is contradictory to satisfy at the same time; (2) highly relying on long skip-connections between the encoder and the final generator, leaking a certain amount of target face identity into the result. To fix them, we introduce a new face swap framework called 'WSC-swap' that gets rid of skip connections and uses two target encoders to respectively capture the pixel-level non-facial region attributes and the semantic non-identity attributes in the face region. To further reinforce the disentanglement learning for the target encoder, we employ both identity removal loss via adversarial training (i.e., GAN) and the non-identity preservation loss via prior 3DMM models like [11]. Extensive experiments on both FaceForensics++ and CelebA-HQ show that our results significantly outperform previous works on a rich set of metrics, including one novel metric for measuring identity consistency that was completely neglected before.Comment: Accepted by ICCV 202

    Video Prediction by Efficient Transformers

    Full text link
    Video prediction is a challenging computer vision task that has a wide range of applications. In this work, we present a new family of Transformer-based models for video prediction. Firstly, an efficient local spatial-temporal separation attention mechanism is proposed to reduce the complexity of standard Transformers. Then, a full autoregressive model, a partial autoregressive model and a non-autoregressive model are developed based on the new efficient Transformer. The partial autoregressive model has a similar performance with the full autoregressive model but a faster inference speed. The non-autoregressive model not only achieves a faster inference speed but also mitigates the quality degradation problem of the autoregressive counterparts, but it requires additional parameters and loss function for learning. Given the same attention mechanism, we conducted a comprehensive study to compare the proposed three video prediction variants. Experiments show that the proposed video prediction models are competitive with more complex state-of-the-art convolutional-LSTM based models. The source code is available at https://github.com/XiYe20/VPTR.Comment: Accepted by Image and Vision Computing. arXiv admin note: text overlap with arXiv:2203.1583

    LatentKeypointGAN: Controlling GANs via Latent Keypoints

    Full text link
    Generative adversarial networks (GANs) have attained photo-realistic quality in image generation. However, how to best control the image content remains an open challenge. We introduce LatentKeypointGAN, a two-stage GAN which is trained end-to-end on the classical GAN objective with internal conditioning on a set of space keypoints. These keypoints have associated appearance embeddings that respectively control the position and style of the generated objects and their parts. A major difficulty that we address with suitable network architectures and training schemes is disentangling the image into spatial and appearance factors without domain knowledge and supervision signals. We demonstrate that LatentKeypointGAN provides an interpretable latent space that can be used to re-arrange the generated images by re-positioning and exchanging keypoint embeddings, such as generating portraits by combining the eyes, nose, and mouth from different images. In addition, the explicit generation of keypoints and matching images enables a new, GAN-based method for unsupervised keypoint detection
    • …
    corecore