263 research outputs found

    Minimum Perimeter Rectangles That Enclose Congruent Non-Overlapping Circles

    Get PDF
    We use computational experiments to find the rectangles of minimum perimeter into which a given number n of non-overlapping congruent circles can be packed. No assumption is made on the shape of the rectangles. In many of the packings found, the circles form the usual regular square-grid or hexagonal patterns or their hybrids. However, for most values of n in the tested range n =< 5000, e.g., for n = 7, 13, 17, 21, 22, 26, 31, 37, 38, 41, 43...,4997, 4998, 4999, 5000, we prove that the optimum cannot possibly be achieved by such regular arrangements. Usually, the irregularities in the best packings found for such n are small, localized modifications to regular patterns; those irregularities are usually easy to predict. Yet for some such irregular n, the best packings found show substantial, extended irregularities which we did not anticipate. In the range we explored carefully, the optimal packings were substantially irregular only for n of the form n = k(k+1)+1, k = 3, 4, 5, 6, 7, i.e., for n = 13, 21, 31, 43, and 57. Also, we prove that the height-to-width ratio of rectangles of minimum perimeter containing packings of n congruent circles tends to 1 as n tends to infinity.Comment: existence of irregular minimum perimeter packings for n not of the form (10) is conjectured; smallest such n is n=66; existence of irregular minimum area packings is conjectured, e.g. for n=453; locally optimal packings for the two minimization criteria are conjecturally the same (p.22, line 5); 27 pages, 12 figure

    Jamming Transition In Non-Spherical Particle Systems: Pentagons Versus Disks

    Get PDF
    We investigate the jamming transition in a quasi-2D granular material composed of regular pentagons or disks subjected to quasistatic uniaxial compression. We report six major findings based on experiments with monodisperse photoelastic particles with static friction coefficient μ≈1. (1) For both pentagons and disks, the onset of rigidity occurs when the average coordination number of non-rattlers, Znr, reaches 3, and the dependence of Znr on the packing fraction ϕ changes again when Znr reaches 4. (2) Though the packing fractions ϕc1 and ϕc2 at these transitions differ from run to run, for both shapes the data from all runs with different initial configurations collapses when plotted as a function of the non-rattler fraction. (3) The averaged values of ϕc1 and ϕc2 for pentagons are around 1% smaller than those for disks. (4) Both jammed pentagons and disks show Gamma distribution of the Voronoi cell area with same parameters. (5) The jammed pentagons have similar translational order for particle centers but slightly less orientational order for contacting pairs compared to jammed disks. (6) For jammed pentagons, the angle between edges at a face-to-vertex contact point shows a uniform distribution and the size of a cluster connected by face-to-face contacts shows a power-law distribution

    Jamming Transition In Non-Spherical Particle Systems: Pentagons Versus Disks

    Get PDF
    We investigate the jamming transition in a quasi-2D granular material composed of regular pentagons or disks subjected to quasistatic uniaxial compression. We report six major findings based on experiments with monodisperse photoelastic particles with static friction coefficient μ≈1. (1) For both pentagons and disks, the onset of rigidity occurs when the average coordination number of non-rattlers, Znr, reaches 3, and the dependence of Znr on the packing fraction ϕ changes again when Znr reaches 4. (2) Though the packing fractions ϕc1 and ϕc2 at these transitions differ from run to run, for both shapes the data from all runs with different initial configurations collapses when plotted as a function of the non-rattler fraction. (3) The averaged values of ϕc1 and ϕc2 for pentagons are around 1% smaller than those for disks. (4) Both jammed pentagons and disks show Gamma distribution of the Voronoi cell area with same parameters. (5) The jammed pentagons have similar translational order for particle centers but slightly less orientational order for contacting pairs compared to jammed disks. (6) For jammed pentagons, the angle between edges at a face-to-vertex contact point shows a uniform distribution and the size of a cluster connected by face-to-face contacts shows a power-law distribution
    • …
    corecore