587 research outputs found

    Improving Deep Transformer with Depth-Scaled Initialization and Merged Attention

    Get PDF
    The general trend in NLP is towards increasing model capacity and performance via deeper neural networks. However, simply stacking more layers of the popular Transformer architecture for machine translation results in poor convergence and high computational overhead. Our empirical analysis suggests that convergence is poor due to gradient vanishing caused by the interaction between residual connection and layer normalization. We propose depth-scaled initialization (DS-Init), which decreases parameter variance at the initialization stage, and reduces output variance of residual connections so as to ease gradient back-propagation through normalization layers. To address computational cost, we propose a merged attention sublayer (MAtt) which combines a simplified average-based self-attention sublayer and the encoder-decoder attention sublayer on the decoder side. Results on WMT and IWSLT translation tasks with five translation directions show that deep Transformers with DS-Init and MAtt can substantially outperform their base counterpart in terms of BLEU (+1.1 BLEU on average for 12-layer models), while matching the decoding speed of the baseline model thanks to the efficiency improvements of MAtt

    Self attention networks in speaker recognition

    Get PDF
    Recently, there has been a significant surge of interest in Self-Attention Networks (SANs) based on the Transformer architecture. This can be attributed to their notable ability for parallelization and their impressive performance across various Natural Language Processing applications. On the other hand, the utilization of large-scale, multi-purpose language models trained through self-supervision is progressively more prevalent, for tasks like speech recognition. In this context, the pre-trained model, which has been trained on extensive speech data, can be fine-tuned for particular downstream tasks like speaker verification. These massive models typically rely on SANs as their foundational architecture. Therefore, studying the potential capabilities and training challenges of such models is of utmost importance for the future generation of speaker verification systems. In this direction, we propose a speaker embedding extractor based on SANs to obtain a discriminative speaker representation given non-fixed length speech utterances. With the advancements suggested in this work, we could achieve up to 41% relative performance improvement in terms of EER compared to the naive SAN which was proposed in our previous work. Moreover, we empirically show the training instability in such architectures in terms of rank collapse and further investigate the potential solutions to alleviate this shortcoming.This work was supported by the Spanish Project ADAVOICE PID2019-107579RB-I00 (MICINN).Peer ReviewedPostprint (published version

    Optimizing Deep Transformers for Chinese-Thai Low-Resource Translation

    Full text link
    In this paper, we study the use of deep Transformer translation model for the CCMT 2022 Chinese-Thai low-resource machine translation task. We first explore the experiment settings (including the number of BPE merge operations, dropout probability, embedding size, etc.) for the low-resource scenario with the 6-layer Transformer. Considering that increasing the number of layers also increases the regularization on new model parameters (dropout modules are also introduced when using more layers), we adopt the highest performance setting but increase the depth of the Transformer to 24 layers to obtain improved translation quality. Our work obtains the SOTA performance in the Chinese-to-Thai translation in the constrained evaluation

    Transformer-based NMT : modeling, training and implementation

    Get PDF
    International trade and industrial collaborations enable countries and regions to concentrate their developments on specific industries while making the most of other countries' specializations, which significantly accelerates global development. However, globalization also increases the demand for cross-region communication. Language barriers between many languages worldwide create a challenge for achieving deep collaboration between groups speaking different languages, increasing the need for translation. Language technology, specifically, Machine Translation (MT) holds the promise to enable communication between languages efficiently in real-time with minimal costs. Even though nowadays computers can perform computation in parallel very fast, which provides machine translation users with translations with very low latency, and although the evolution from Statistical Machine Translation (SMT) to Neural Machine Translation (NMT) with the utilization of advanced deep learning algorithms has significantly boosted translation quality, current machine translation algorithms are still far from accurately translating all input. Thus, how to further improve the performance of state-of-the-art NMT algorithm remains a valuable open research question which has received a wide range of attention. In the research presented in this thesis, we first investigate the long-distance relation modeling ability of the state-of-the-art NMT model, the Transformer. We propose to learn source phrase representations and incorporate them into the Transformer translation model, aiming to enhance its ability to capture long-distance dependencies well. Second, though previous work (Bapna et al., 2018) suggests that deep Transformers have difficulty in converging, we empirically find that the convergence of deep Transformers depends on the interaction between the layer normalization and residual connections employed to stabilize its training. We conduct a theoretical study about how to ensure the convergence of Transformers, especially for deep Transformers, and propose to ensure the convergence of deep Transformers by putting the Lipschitz constraint on its parameter initialization. Finally, we investigate how to dynamically determine proper and efficient batch sizes during the training of the Transformer model. We find that the gradient direction gets stabilized with increasing batch size during gradient accumulation. Thus we propose to dynamically adjust batch sizes during training by monitoring the gradient direction change within gradient accumulation, and to achieve a proper and efficient batch size by stopping the gradient accumulation when the gradient direction starts to fluctuate. For our research in this thesis, we also implement our own NMT toolkit, the Neutron implementation of the Transformer and its variants. In addition to providing fundamental features as the basis of our implementations for the approaches presented in this thesis, we support many advanced features from recent cutting-edge research work. Implementations of all our approaches in this thesis are also included and open-sourced in the toolkit. To compare with previous approaches, we mainly conducted our experiments on the data from the WMT 14 English to German (En-De) and English to French (En-Fr) news translation tasks, except when studying the convergence of deep Transformers, where we alternated the WMT 14 En-Fr task with the WMT 15 Czech to English (Cs-En) news translation task to compare with Bapna et al. (2018). The sizes of these datasets vary from medium (the WMT 14 En-De, ~ 4.5M sentence pairs) to very large (the WMT 14 En-Fr, ~ 36M sentence pairs), thus we suggest our approaches help improve the translation quality between popular language pairs which are widely used and have sufficient data.China Scholarship Counci
    • …
    corecore