15 research outputs found

    Artificial Intelligence for Noninvasive Fetal Electrocardiogram Analysis

    Get PDF

    Machine learning and disease prediction in obstetrics

    Get PDF
    Machine learning technologies and translation of artificial intelligence tools to enhance the patient experience are changing obstetric and maternity care. An increasing number of predictive tools have been developed with data sourced from electronic health records, diagnostic imaging and digital devices. In this review, we explore the latest tools of machine learning, the algorithms to establish prediction models and the challenges to assess fetal well-being, predict and diagnose obstetric diseases such as gestational diabetes, pre-eclampsia, preterm birth and fetal growth restriction. We discuss the rapid growth of machine learning approaches and intelligent tools for automated diagnostic imaging of fetal anomalies and to asses fetoplacental and cervix function using ultrasound and magnetic resonance imaging. In prenatal diagnosis, we discuss intelligent tools for magnetic resonance imaging sequencing of the fetus, placenta and cervix to reduce the risk of preterm birth. Finally, the use of machine learning to improve safety standards in intrapartum care and early detection of complications will be discussed. The demand for technologies to enhance diagnosis and treatment in obstetrics and maternity should improve frameworks for patient safety and enhance clinical practice

    Machine learning algorithms combining slope deceleration and fetal heart rate features to predict acidemia

    Get PDF
    Electronic fetal monitoring (EFM) is widely used in intrapartum care as the standard method for monitoring fetal well-being. Our objective was to employ machine learning algorithms to predict acidemia by analyzing specific features extracted from the fetal heart signal within a 30 min window, with a focus on the last deceleration occurring closest to delivery. To achieve this, we conducted a case–control study involving 502 infants born at Miguel Servet University Hospital in Spain, maintaining a 1:1 ratio between cases and controls. Neonatal acidemia was defined as a pH level below 7.10 in the umbilical arterial blood. We constructed logistic regression, classification trees, random forest, and neural network models by combining EFM features to predict acidemia. Model validation included assessments of discrimination, calibration, and clinical utility. Our findings revealed that the random forest model achieved the highest area under the receiver characteristic curve (AUC) of 0.971, but logistic regression had the best specificity, 0.879, for a sensitivity of 0.95. In terms of clinical utility, implementing a cutoff point of 31% in the logistic regression model would prevent unnecessary cesarean sections in 51% of cases while missing only 5% of acidotic cases. By combining the extracted variables from EFM recordings, we provide a practical tool to assist in avoiding unnecessary cesarean sections

    Machine learning models based on clinical indices and cardiotocographic features for discriminating asphyxia fetuses—Porto retrospective intrapartum study

    Get PDF
    Perinatal asphyxia is one of the most frequent causes of neonatal mortality, affecting approximately four million newborns worldwide each year and causing the death of one million individuals. One of the main reasons for these high incidences is the lack of consensual methods of early diagnosis for this pathology. Estimating risk-appropriate health care for mother and baby is essential for increasing the quality of the health care system. Thus, it is necessary to investigate models that improve the prediction of perinatal asphyxia. Access to the cardiotocographic signals (CTGs) in conjunction with various clinical parameters can be crucial for the development of a successful model. This exploratory work aims to develop predictive models of perinatal asphyxia based on clinical parameters and fetal heart rate (fHR) indices. Single gestations data from a retrospective unicentric study from Centro Hospitalar e Universitário do Porto de São João (CHUSJ) between 2010 and 2018 was probed. The CTGs were acquired and analyzed by Omniview-SisPorto, estimating several fHR features. The clinical variables were obtained from the electronic clinical records stored by ObsCare. Entropy and compression characterized the complexity of the fHR time series. These variables' contribution to the prediction of asphyxia perinatal was probed by binary logistic regression (BLR) and Naive-Bayes (NB) models. The data consisted of 517 cases, with 15 pathological cases. The asphyxia prediction models showed promising results, with an area under the receiver operator characteristic curve (AUC) >70%. In NB approaches, the best models combined clinical and SisPorto features. The best model was the univariate BLR with the variable compression ratio scale 2 (CR2) and an AUC of 94.93% [94.55; 95.31%]. Both BLR and Bayesian models have advantages and disadvantages. The model with the best performance predicting perinatal asphyxia was the univariate BLR with the CR2 variable, demonstrating the importance of non-linear indices in perinatal asphyxia detection. Future studies should explore decision support systems to detect sepsis, including clinical and CTGs features (linear and non-linear).info:eu-repo/semantics/publishedVersio

    A novel approach for cardiotocography paper digitization and classification for abnormality detection

    Get PDF
    Cardiotocography (CTG) is a clinical procedure that is used to track and gauge the severity of fetal distress. Although CTG is the most often used equipment to monitor and assess the health of the fetus, the high rate of false positive results due to visual interpretation significantly contributes to needless surgical delivery or delayed intervention. In this study, a novel approach is introduced where both printing CTG paper is digitized and a machine learning approach is employed to detect the abnormality in the digitized CTG signal. Image processing-based preprocessing steps are employed to make the printing of CTG paper more convenient to extract the CTG signal. Various signal-processing techniques are used to calibrate the extracted CTG signal. Then, Empirical Mode Decomposition (EMD) is used to decompose the CTG signal into its frequency components and instantaneous frequency and spectral entropy features are extracted. After feature normalization and feature selection with ReliefF algorithm, support vector machines (SVM) is used for the classification of the normal and abnormal classes. A novel dataset is used in the experimental works and various performance evaluation metrics are used for the evaluation of the achievement of the proposed method. 10-fold cross-validation-based experiments show that the proposed method is quite efficient in abnormality detection in printing CTG papers where an average accuracy score of around 90.0% is produced

    Classification of Foetal Distress and Hypoxia Using Machine Learning

    Get PDF
    Foetal distress and hypoxia (oxygen deprivation) is considered a serious condition and one of the main factors for caesarean section in the obstetrics and gynaecology department. It is considered to be the third most common cause of death in new-born babies. Foetal distress occurs in about 1 in 20 pregnancies. Many foetuses that experience some sort of hypoxic effects can have series risks such as damage to the cells of the central nervous system that may lead to life-long disability (cerebral palsy) or even death. Continuous labour monitoring is essential to observe foetal wellbeing during labour. Many studies have used data from foetal surveillance by monitoring the foetal heart rate with a cardiotocography, which has succeeded traditional methods for foetal monitoring since 1960. Despite the indication of normal results, these results are not reassuring, and a small proportion of these foetuses are actually hypoxic. This study investigates the use of machine learning classifiers for classification of foetal hypoxic cases using a novel method, in which we are not only considering the classification performance only, but also investigating the worth of each participating parameter to the classification as seen by medical literature. The main parameters that are included in this study as indicators of metabolic acidosis are: pH level (which is a measure of the hydrogen ion concentration of blood to specify the acidity or alkalinity), as an indicator of respiratory acidosis; Base Deficit of extra-cellular fluid level and Base Excess (BE) (which is the measure of the total concentration of blood buffer base that indicates metabolic acidosis or compensated respiratory alkalosis). In addition to other parameters such as the PCO2 (partial pressure of carbon dioxide can reflect the hypoxic state of the foetus) and the Apgar scores (which shows the foetal physical activity within a specific time interval after birth). The provided data was an open-source partum clinical data obtained by Physionet, including both hypoxic cases and normal cases. Six well known machine learning classifier are used for the classification; each model was presented with a set of selected features derived from the clinical data. Classifier evaluation is performed using the receiver operating characteristic curve analysis, area under the curve plots, as well as confusion matrix. The simulation results indicate that machine learning classifiers provide good results in diagnosis of foetal hypoxia, in addition to acceptable results of different combinations of parameters to differentiate the cases

    Machine learning models based on clinical indices and cardiotocographic features for discriminating asphyxia fetuses—Porto retrospective intrapartum study

    Get PDF
    IntroductionPerinatal asphyxia is one of the most frequent causes of neonatal mortality, affecting approximately four million newborns worldwide each year and causing the death of one million individuals. One of the main reasons for these high incidences is the lack of consensual methods of early diagnosis for this pathology. Estimating risk-appropriate health care for mother and baby is essential for increasing the quality of the health care system. Thus, it is necessary to investigate models that improve the prediction of perinatal asphyxia. Access to the cardiotocographic signals (CTGs) in conjunction with various clinical parameters can be crucial for the development of a successful model.ObjectivesThis exploratory work aims to develop predictive models of perinatal asphyxia based on clinical parameters and fetal heart rate (fHR) indices.MethodsSingle gestations data from a retrospective unicentric study from Centro Hospitalar e Universitário do Porto de São João (CHUSJ) between 2010 and 2018 was probed. The CTGs were acquired and analyzed by Omniview-SisPorto, estimating several fHR features. The clinical variables were obtained from the electronic clinical records stored by ObsCare. Entropy and compression characterized the complexity of the fHR time series. These variables' contribution to the prediction of asphyxia perinatal was probed by binary logistic regression (BLR) and Naive-Bayes (NB) models.ResultsThe data consisted of 517 cases, with 15 pathological cases. The asphyxia prediction models showed promising results, with an area under the receiver operator characteristic curve (AUC) >70%. In NB approaches, the best models combined clinical and SisPorto features. The best model was the univariate BLR with the variable compression ratio scale 2 (CR2) and an AUC of 94.93% [94.55; 95.31%].ConclusionBoth BLR and Bayesian models have advantages and disadvantages. The model with the best performance predicting perinatal asphyxia was the univariate BLR with the CR2 variable, demonstrating the importance of non-linear indices in perinatal asphyxia detection. Future studies should explore decision support systems to detect sepsis, including clinical and CTGs features (linear and non-linear)

    Computational Physiology

    Get PDF
    This open access volume compiles student reports from the 2021 Simula Summer School in Computational Physiology. Interested readers will find herein a number of modern approaches to modeling excitable tissue. This should provide a framework for tools available to model subcellular and tissue-level physiology across scales and scientific questions. In June through August of 2021, Simula held the seventh annual Summer School in Computational Physiology in collaboration with the University of Oslo (UiO) and the University of California, San Diego (UCSD). The course focuses on modeling excitable tissues, with a special interest in cardiac physiology and neuroscience. The majority of the school consists of group research projects conducted by Masters and PhD students from around the world, and advised by scientists at Simula, UiO and UCSD. Each group then produced a report that addreses a specific problem of importance in physiology and presents a succinct summary of the findings. Reports may not necessarily represent new scientific results; rather, they can reproduce or supplement earlier computational studies or experimental findings. Reports from eight of the summer projects are included as separate chapters. The fields represented include cardiac geometry definition (Chapter 1), electrophysiology and pharmacology (Chapters 2–5), fluid mechanics in blood vessels (Chapter 6), cardiac calcium handling and mechanics (Chapter 7), and machine learning in cardiac electrophysiology (Chapter 8)
    corecore