118,652 research outputs found

    Making stillbirths count, making numbers talk - issues in data collection for stillbirths.

    Get PDF
    BACKGROUND: Stillbirths need to count. They constitute the majority of the world's perinatal deaths and yet, they are largely invisible. Simply counting stillbirths is only the first step in analysis and prevention. From a public health perspective, there is a need for information on timing and circumstances of death, associated conditions and underlying causes, and availability and quality of care. This information will guide efforts to prevent stillbirths and improve quality of care. DISCUSSION: In this report, we assess how different definitions and limits in registration affect data capture, and we discuss the specific challenges of stillbirth registration, with emphasis on implementation. We identify what data need to be captured, we suggest a dataset to cover core needs in registration and analysis of the different categories of stillbirths with causes and quality indicators, and we illustrate the experience in stillbirth registration from different cultural settings. Finally, we point out gaps that need attention in the International Classification of Diseases and review the qualities of alternative systems that have been tested in low- and middle-income settings. SUMMARY: Obtaining high-quality data will require consistent definitions for stillbirths, systematic population-based registration, better tools for surveys and verbal autopsies, capacity building and training in procedures to identify causes of death, locally adapted quality indicators, improved classification systems, and effective registration and reporting systems

    Information technology and urban green analysis

    Get PDF
    It is well recognized that green area plays a pivotal role in improving urban environment, such as preserving water and soil, controlling temperature and humidity of air, preventing pollution, flood prevention, functioning as buffers between incompatible land uses, preserving natural habitat, and providing space for recreation and relaxation. However, due to pressures from new development both in urban fringes and urban centres, urban green and open spaces are seen to be rapidly declining in term of allocated spaces and quality. Without careful urban land use planning, many open spaces will be filled with residential and commercial buildings. Therefore, there is a need for proper planning control to ensure that the provisions of green spaces are adequately being conserved for current and future generations. The need for an urban green information system is particularly important for strategic planning at macro level and local planning at the micro level. The advent of information technology has created an opportunity for the development of new approaches in preserving and monitoring the development of urban green and open spaces. This paper will discuss the use of Geographical Information Systems (GIS) incorporated with other data sources such as remote sensing images and aerial photographs in providing innovative and alternative solutions in the management and monitoring of urban green. GIS is widely accepted in urban landscape planning as it can provide better understanding on the spatial pattern and changes of land use in an area. This paper will primarily focus on digital database that are developed to assist in monitoring urban green and open spaces at regional and local context. The application of GIS in the Klang Valley region or better known as AGISwlk developed since mid-1990's is currently being used by various organisations in the region. The focus of AGISwlk is not merely in providing relevant database to its stakeholders but more importantly, assist in making specific and relevant decisions with regard to spatial planning. It is also used to monitor the loss of green areas by using several temporal data sets. The method of classifying green and open spaces in the region is also being discussed. This paper demonstrates that GIS can be an effective tool in preserving and monitoring green and open spaces in an urban area. The contribution of urban green digital database in someway may leads toward landscape sustainability as to satisfy the ever changing society

    Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet

    Full text link
    Skin cancer, a major form of cancer, is a critical public health problem with 123,000 newly diagnosed melanoma cases and between 2 and 3 million non-melanoma cases worldwide each year. The leading cause of skin cancer is high exposure of skin cells to UV radiation, which can damage the DNA inside skin cells leading to uncontrolled growth of skin cells. Skin cancer is primarily diagnosed visually employing clinical screening, a biopsy, dermoscopic analysis, and histopathological examination. It has been demonstrated that the dermoscopic analysis in the hands of inexperienced dermatologists may cause a reduction in diagnostic accuracy. Early detection and screening of skin cancer have the potential to reduce mortality and morbidity. Previous studies have shown Deep Learning ability to perform better than human experts in several visual recognition tasks. In this paper, we propose an efficient seven-way automated multi-class skin cancer classification system having performance comparable with expert dermatologists. We used a pretrained MobileNet model to train over HAM10000 dataset using transfer learning. The model classifies skin lesion image with a categorical accuracy of 83.1 percent, top2 accuracy of 91.36 percent and top3 accuracy of 95.34 percent. The weighted average of precision, recall, and f1-score were found to be 0.89, 0.83, and 0.83 respectively. The model has been deployed as a web application for public use at (https://saketchaturvedi.github.io). This fast, expansible method holds the potential for substantial clinical impact, including broadening the scope of primary care practice and augmenting clinical decision-making for dermatology specialists.Comment: This is a pre-copyedited version of a contribution published in Advances in Intelligent Systems and Computing, Hassanien A., Bhatnagar R., Darwish A. (eds) published by Chaturvedi S.S., Gupta K., Prasad P.S. The definitive authentication version is available online via https://doi.org/10.1007/978-981-15-3383-9_1

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems
    corecore