7,642 research outputs found

    Improving Computer Based Speech Therapy Using a Fuzzy Expert System

    Get PDF
    In this paper we present our work about Computer Based Speech Therapy systems optimization. We focus especially on using a fuzzy expert system in order to determine specific parameters of personalized therapy, i.e. the number, length and content of training sessions. The efficiency of this new approach was tested during an experiment performed with our CBST, named LOGOMON

    From Fuzzy Expert System to Artificial Neural Network: Application to Assisted Speech Therapy

    Get PDF
    This chapter addresses the following question: What are the advantages of extending a fuzzy expert system (FES) to an artificial neural network (ANN), within a computer‐based speech therapy system (CBST)? We briefly describe the key concepts underlying the principles behind the FES and ANN and their applications in assisted speech therapy. We explain the importance of an intelligent system in order to design an appropriate model for real‐life situations. We present data from 1‐year application of these concepts in the field of assisted speech therapy. Using an artificial intelligent system for improving speech would allow designing a training program for pronunciation, which can be individualized based on specialty needs, previous experiences, and the child\u27s prior therapeutical progress. Neural networks add a great plus value when dealing with data that do not normally match our previous designed pattern. Using an integrated approach that combines FES and ANN allows our system to accomplish three main objectives: (1) develop a personalized therapy program; (2) gradually replace some human expert duties; (3) use “self‐learning” capabilities, a component traditionally reserved for humans. The results demonstrate the viability of the hybrid approach in the context of speech therapy that can be extended when designing similar applications

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    A model for continuous monitoring of patients with major depression in short and long term periods

    Get PDF
    The final publication is available at IOS Press through http://dx.doi.org/10.3233/THC-161289BACKGROUND AND OBJECTIVE: Major depressive disorder causes more human suffering than any other disease affecting humankind. It has a high prevalence and it is predicted that it will be among the three leading causes of disease burden by 2030. The prevalence of depression, all of its social and personal costs, and its recurrent characteristics, put heavy constraints on the ability of the public healthcare system to provide sufficient support for patients with depression. In this research, a model for continuous monitoring and tracking of depression in both short-term and long-term periods is presented. This model is based on a new qualitative reasoning approach. METHOD: This paper describes the patient assessment unit of a major depression monitoring system that has three modules: a patient progress module, based on a qualitative reasoning model; an analysis module, based on expert knowledge and a rules-based system; and the communication module. These modules base their reasoning mainly on data of the patient's mood and life events that are obtained from the patient's responses to specific questionnaires (PHQ-9, M.I.N.I. and Brugha). The patient assessment unit provides synthetic and useful information for both patients and physicians, keeps them informed of the progress of patients, and alerts them in the case of necessity. RESULTS: A set of hypothetical patients has been defined based on clinically possible cases in order to perform a complete scenario evaluation. The results that have been verified by psychiatrists suggest the utility of the platform. CONCLUSION: The proposed major depression monitoring system takes advantage of current technologies and facilitates more frequent follow-up of the progress of patients during their home stay after being diagnosed with depression by a psychiatrist.Peer ReviewedPostprint (author's final draft

    AI Applications in Psychology

    Get PDF

    Tracking Visible Features of Speech for Computer-Based Speech Therapy for Childhood Apraxia of Speech

    Get PDF
    At present, there are few, if any, effective computer-based speech therapy systems (CBSTs) that support the at-home component for clinical interventions for Childhood Apraxia of Speech (CAS). PROMPT, an established speech therapy intervention for CAS, has the potential to be supported via a CBST, which could increase engagement and provide valuable feedback to the child. However, the necessary computational techniques have not yet been developed and evaluated. In this thesis, I will describe the development of some of the key underlying computational components that are required for the development of such a system. These components concern camera-based tracking of visible features of speech which concern jaw kinematics. These components would also be necessary for the serious game that we have envisioned

    A Dynamic Neuro-Fuzzy Model Providing Bio-State Estimation and Prognosis Prediction for Wearable Intelligent Assistants

    Get PDF
    BACKGROUND: Intelligent management of wearable applications in rehabilitation requires an understanding of the current context, which is constantly changing over the rehabilitation process because of changes in the person's status and environment. This paper presents a dynamic recurrent neuro-fuzzy system that implements expert-and evidence-based reasoning. It is intended to provide context-awareness for wearable intelligent agents/assistants (WIAs). METHODS: The model structure includes the following types of signals: inputs, states, outputs and outcomes. Inputs are facts or events which have effects on patients' physiological and rehabilitative states; different classes of inputs (e.g., facts, context, medication, therapy) have different nonlinear mappings to a fuzzy "effect." States are dimensionless linguistic fuzzy variables that change based on causal rules, as implemented by a fuzzy inference system (FIS). The FIS, with rules based on expertise and evidence, essentially defines the nonlinear state equations that are implemented by nuclei of dynamic neurons. Outputs, a function of weighing of states and effective inputs using conventional or fuzzy mapping, can perform actions, predict performance, or assist with decision-making. Outcomes are scalars to be extremized that are a function of outputs and states. RESULTS: The first example demonstrates setup and use for a large-scale stroke neurorehabilitation application (with 16 inputs, 12 states, 5 outputs and 3 outcomes), showing how this modelling tool can successfully capture causal dynamic change in context-relevant states (e.g., impairments, pain) as a function of input event patterns (e.g., medications). The second example demonstrates use of scientific evidence to develop rule-based dynamic models, here for predicting changes in muscle strength with short-term fatigue and long-term strength-training. CONCLUSION: A neuro-fuzzy modelling framework is developed for estimating rehabilitative change that can be applied in any field of rehabilitation if sufficient evidence and/or expert knowledge are available. It is intended to provide context-awareness of changing status through state estimation, which is critical information for WIA's to be effective
    corecore